
Vol.:(0123456789)1 3

Coral Reefs (2023) 42:1131–1145 
https://doi.org/10.1007/s00338-023-02417-0

REPORT

Porites astreoides coral populations demonstrate high clonality 
and connectivity in southeast Florida

Erin N. Shilling1   · Ryan J. Eckert1   · 
Alexis B. Sturm1   · Joshua D. Voss1   

Received: 24 August 2022 / Accepted: 21 August 2023 / Published online: 4 September 2023 
© The Author(s), under exclusive licence to International Coral Reef Society (ICRS) 2023

driven by high fecundity and long-range dispersal of a few 
successful genotypes.
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Introduction

Losses of large, primary reef-building corals in Florida and 
the wider Caribbean have been well documented over sev-
eral decades (Gardner et al. 2003; Alves et al. 2022) and 
linked to both natural and anthropogenic stressors including 
global warming (Baker et al. 2008; Frölicher et al. 2018), 
hurricanes (Gardner et  al. 2005; Dahlgren et  al. 2020), 
ocean acidification, and nutrient pollution (Aronson and 
Precht 2001; Carpenter et al. 2008; IPCC 2014; Jackson 
et al. 2014). These stressors also correspond with increased 
incidence and intensity of bleaching events and disease 
outbreaks, both of which can lead to significant declines in 
coral cover (Sutherland et al. 2004; Harvell et al. 2007; Ruiz-
Moreno et al. 2012; Vega Thurber et al. 2014; Tracy et al. 
2019). The most recent severe coral disease outbreak, stony 
coral tissue loss disease (SCTLD), has contributed even fur-
ther to the decline of coral cover and diversity on reefs in 
Florida and the wider Caribbean (Precht et al. 2016; Walton 
et al. 2018; Alvarez-Filip et al. 2019; Estrada-Saldívar et al. 
2020; Brandt et al. 2021; Costa et al. 2021; Dahlgren et al. 
2021). Since SCTLD was first documented near Miami, 
Florida in 2014, it has spread along the entirety of Florida’s 
Coral Reef (Precht et al. 2016; Walton et al. 2018).

Throughout the Caribbean these disturbance events and 
subsequent losses of dominant coral cover have been fol-
lowed by a proliferation of “weedy” stony coral species 
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including Agaricia spp., Siderastrea spp., and Porites spp. 
(Green et al. 2008; Walton et al. 2018; Jones et al. 2020; 
Eagleson et al. 2021; Heres et al. 2021). The Southeast 
Florida Coral Reef Evaluation and Monitoring Project 
(SECREMP) has reported increases in P. astreoides, P. 
porites, and Agaricia spp. colony abundance from 2013 
to 2020 (Walton et al. 2018; Hayes et al. 2022). In 2019, 
P. astreoides was the most common coral species docu-
mented across all SECREMP sites, with P. astreoides, 
Agaricia spp., and Siderastrea spp. also comprising the 
majority of all coral recruits and juveniles < 4  cm in 
diameter (Gilliam et al. 2020). The replacement of larger, 
hermatypic coral colonies like Orbicellids and Montast-
raea cavernosa by these weedy species with less rugose 
morphologies represent a potential decrease in habitat 
structural complexity, as well as overall rates of carbon-
ate accretion, which characterize and support the biodiver-
sity of coral reefs (Alvarez-Filip et al. 2013; Graham and 
Nash 2013; Perry et al. 2015; Kuffner and Toth 2016). It 
has been argued that this change in community structure 
represents a significant ecological shift that is unmatched 
in the geologic record (Toth et al. 2019).

The observed recent increases in P. astreoides abundance 
and cover in southeast Florida are likely linked in part to the 
species’ relatively low susceptibility to SCTLD as well as its 
reproductive strategies (NOAA 2018). Porites astreoides is 
a brooding coral species that holds its fertilized, developing 
embryos within its polyps and releases relatively large plan-
ula larvae that mature quickly (Chornesky and Peters 1987; 
Soong 1991). Additionally, P. astreoides spawn multiple 
times each year and have been shown to both self-fertilize 
and undergo internal fertilization after receiving gametes 
from other colonies (Szmant 1986; Brazeau et al. 1998). One 
ex situ experiment even showed the potential for P. astre-
oides colonies to reproduce parthenogenetically, a process 
where an unfertilized egg is able to develop into an embryo 
(Vollmer 2018). Therefore, it is possible that many of the 
new colonies observed on St. Lucie Reef and other reefs in 
the region are clones or at least very closely related to each 
other, depending also upon the level of gene flow among P. 
astreoides populations.

In addition to apparent resistance to disease and high 
fecundity, P. astreoides has been considered a hardy species 
for decades, as some populations have displayed significant 
heat tolerance (Kenkel et al. 2013), and the species is pre-
sent across a wide range of depths (Engel and Bak 1979). 
These observations combined with documented increases 
in P. astreoides coverage led some to propose this species 
as an ecological “winner” in relatively degraded Caribbean 
reefs, a claim that had been relatively accepted (Green et al. 
2008; Eagleson et al. 2021). However, the relative long-term 
success of this species under changing reef conditions is 
unknown, with at least one report suggesting a decline of 
this success under continued degradation of Caribbean reefs 
(Edmunds et al. 2021).

The primary aims of this study were to better under-
stand the population genetic structure of P. astreoides in 
southeast Florida and to investigate genetic similarities that 
could potentially identify the mechanisms underlying their 
recent increases in abundance. To these ends, we employed 
a 2bRAD method to identify single-nucleotide polymor-
phisms (SNPs) and assess relative levels of connectivity, 
genetic structure, and clonality among P. astreoides popula-
tions at five sites across Martin, Palm Beach, and Broward 
counties in southeast Florida. Quantifying the genetic diver-
sity and connectivity of P. astreoides may help to predict 
the resilience of these populations to ongoing and future 
stress events. This is crucial given that P. astreoides is now 
dominant across southeast Florida reefs and has recently 
increased in abundance on several reefs throughout the wider 
Caribbean (Green et al. 2008; Walton et al. 2018; Jones et al. 
2020; Eagleson et al. 2021; Heres et al. 2021).

Materials and methods

Sample sites and collection

Porites astreoides samples were collected by SCUBA divers 
from January to March 2021 on five nearshore reef sites that 
were near but not within SECREMP monitoring stations in 
the southeast Florida region (Table 1, Fig. 1). In total, ninety 

Table 1   Samples collected by population, with county, total samples 
collected (nc), total samples sequenced successfully (ns), number of 
unique multilocus genotypes retained after the removal of clones (ng), 

percentage of the population that was comprised of clones, average 
collection depth in meters, and latitude and longitude of collection 
site

Population County nc ns ng clonality Avg. depth (m) Latitude Longitude

St. Lucie Reef Martin 30 30 3 90% 3.0  27.131667 −80.134033
Jupiter Palm Beach 15 15 10 33% 21.7  26.897735 −80.016383
West Palm Beach Palm Beach 15 13 7 46% 14.7  26.652387 −80.020682
Boynton Beach Palm Beach 15 14 10 40% 18.9  26.523552 −80.031692
Ft. Lauderdale Broward 15 15 6 60% 7.1  26.147580 −80.096100
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P. astreoides colonies were sampled, with approximately 2–5 
cm2 of tissue collected from each colony using a hammer 
and chisel. Sampled colonies were located at least 1 m from 
each other to decrease likelihood of sampling clones, but to 
still sample the dense population of St. Lucie Reef across a 
relatively fine spatial scale. Tissue samples were preserved 
in TRIzol in the field and put on ice during transport (4–6 h) 
to Harbor Branch Oceanographic Institute where they were 
stored at −80 °C until DNA extraction. Additionally, as there 
are two known color morphs of P. astreoides, brown and 
green/yellow (Gleason 1993), color was documented from 
photographs that were taken of each colony.

SNP library preparation

DNA was extracted from all samples using a modified 
dispersion buffer/phenol–chloroform–isoamyl alcohol 
extraction method (Sturm et al. 2020). DNA extracts were 
cleaned using the Zymo DNA Clean & Concentrator-5 kit 

and verified for sufficient quality and quantity. Library 
preparation followed a modified 2bRAD protocol based 
on Wang et al. (2012; https://​github.​com/​z0on/​2bRAD_​
denovo). Briefly, samples were digested using the type IIB 
restriction enzyme BcgI, then ligated to indexed adaptors 
for pooling. Three samples (termed “technical replicates”) 
had libraries prepared in triplicate to allow for identifica-
tion of clones during analysis (Manzello et al. 2019). Prior 
to pooling, successful digestion and ligation of all sam-
ples was verified via qPCR. Once verified, samples were 
pooled and eight pools of 12 samples were amplified using 
uniquely indexed Illumina sequencing adaptors, yielding 
unique, triple-indexed samples for sequencing. Amplifica-
tion of the target band of ~ 180 bp was confirmed via gel 
electrophoresis, and equal volumes of the amplicons were 
pooled, concentrated, and quantified prior to sequenc-
ing. The final pool of 96 samples was sent to UT Aus-
tin’s Genomic Sequencing and Analysis Facility, where 
automated size selection with Pippin Prep was completed 

Fig. 1   Map of southeastern Florida coastline and hardbottom reef substrate coverage (light gray) with Porites astreoides sampling sites denoted 
with dots colored by population. Bottom right photograph shows a P. astreoides colony in situ

https://github.com/z0on/2bRAD_denovo
https://github.com/z0on/2bRAD_denovo
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before sequencing on an Illumina NovaSeq with an SP 
flowcell using SR100 chemistry.

Genotyping and clonality

Sequence reads were demultiplexed and trimmed using cus-
tom Perl scripts (https://​github.​com/​z0on/​2bRAD_​denovo). 
Sequences were then quality filtered using cutadapt v1.18, 
removing reads with a Phred quality score < 15 (Martin 
2011). High-quality reads were mapped using the Bowtie2 
aligner to a concatenated Symbiodiniaceae metagenome 
from the currently available Symbiodinium microadriacti-
cum (Aranda et al. 2016), Breviolum minutum (Shoguchi 
et al. 2013), Cladocopium goreaui (Liu et al. 2018), and 
Durusdinium trenchii (Shoguchi et al. 2021) genomes. All 
sequences that did not align to the Symbiodiniaceae refer-
ence were then aligned to the P. astreoides genome using 
Bowtie2 (Langmead and Salzberg 2012; Wong and Putnam 
2022).

All figures were generated in the R statistical environ-
ment v4.1.1; the code and data to generate figures and run 
statistical analyses are publicly available (https://​github.​com/​
erin-​shill​ing/​SEFL_​Pastr​eoides_​2bRAD). ANGSD was used 
to calculate genotype likelihoods with the filters: Minimum 
mapping quality scores of 20, maximum depth of 10 × the 
number of individuals, and loci were only retained if they 
were present in at least 50% of the individual samples; and 
then to create an identity-by-state (IBS) matrix for all sam-
ples with the following filters: minimum mapping quality 
scores of 20, minimum base quality scores of 30, minimum 
p-value for deviation from Hardy–Weinberg equilibrium of 
10–5, minimum p-value for strand bias of 10–5, the removal 
of any tri-allelic SNPs, at least 70% of non-missing geno-
types across samples, p-value of 10–6 that a locus is vari-
able, and a minimum allele frequency of 0.05 (Kornelius-
sen et al. 2014, https://​github.​com/​z0on/​2bRAD_​denovo). A 
hierarchical cluster dendrogram was created from the IBS 
matrix and used to identify natural genetic clones by com-
paring them to the level of genetic similarity exhibited by 
the technical replicates included in the sample set. Based 
on which sample had the highest proportion of reads with 
at least 5X coverage, all but one of each clonal or technical 
replicate group were removed from the dataset. ANGSD was 
then rerun on the clones-removed dataset, using the same 
filters mentioned previously, to identify SNPs for subsequent 
analyses.

Coral population structure

An analysis of molecular variance (AMOVA, 999 permu-
tations) was conducted using the program poppr v2.9.2 
and adegenet v2.1.4 on the BCF file produced by ANGSD 
(Jombart et al. 2021). A distance-based redundancy analysis 

(dbRDA) was conducted on the IBS matrix to assess if 
environmental variables significantly explained any of the 
genetic variation observed (Kamvar et al. 2021). For the 
dbRDA, marine data layers were downloaded in R from 
BioOracle v2.2 using the package sdmpredictors v0.2.11 and 
present-day (long-term averages between 2000 and 2014) 
environmental parameters were extracted from the sites’ 
geographic coordinates (Tyberghein et al. 2012; Assis et al. 
2018; Bosch et al. 2022). Following methods implemented 
in Galaska et al. (2021), collinearity was assessed for all 
environmental variables. When two variables had a signifi-
cant absolute correction coefficient ≥|0.7|, the most ecologi-
cally relevant variable was retained for subsequent analyses 
(Dormann et al. 2013). Additionally, the variance inflation 
factor (VIF) was calculated for the remaining variables and 
only variables with VIF < 10, the accepted threshold for pre-
venting issues from multiple collinearities, were retained. 
Next, to account for population structure in the RDA, a PCA 
was run on the IBS matrix and the PCs which explained 
the majority of the variance were retained as explanatory 
variables in the RDA (Capblancq and Forester 2021). Then, 
using the function ordiR2step in vegan v2.5-7, a forward 
selection analysis of variance (ANOVA) was run to deter-
mine how much, if at all, each variable contributed to the 
amount of variance explained and to select the model that 
best explained the genetic variation (Oksanen et al. 2020). 
Subsequently, a principal coordinates analysis was run 
on those fitted values. Variance partitioning was assessed 
using varpart from the vegan package, and significance was 
assessed using ANOVAs (Oksanen et al. 2020).

Pairwise FST values for each population were calculated 
using StAMPP v1.6.3 package (Pembleton 2021). Population 
structure was assessed using NGSadmix for K = 1 − 8. (The 
number of populations sampled plus 3 to identify potentially 
cryptic clusters; Skotte et al. 2013.) The most likely value of 
K was estimated through both the Evanno method, imple-
mented with the program CLUMPAK, and the Puechmaille 
method, implemented with the program StructureSelector 
(Kopelman et al. 2015; Puechmaille 2016; Li and Liu 2018).

Population connectivity

Estimated recent migration (two to three previous genera-
tions) of sample populations was calculated using Bayes-
Ass v3.04 with 20 million MCMC repetitions, 3 million 
burn-in with the migration, allele frequency, and inbreed-
ing parameters set to 0.32, 0.80, and 0.0039, respectively, 
to reach targeted acceptance rates of 20–60% (Wilson and 
Rannala 2003; Mussmann et al. 2019). Visual assess-
ment of convergence of runs was confirmed using Tracer 
v1.7.2, and deviance among model runs was analyzed 
in R (Rambaut et al. 2018). The trace file with the low-
est Bayesian deviance was used to calculate migration 

https://github.com/z0on/2bRAD_denovo
https://github.com/erin-shilling/SEFL_Pastreoides_2bRAD
https://github.com/erin-shilling/SEFL_Pastreoides_2bRAD
https://github.com/z0on/2bRAD_denovo
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coefficients for each population acting as a source and 
sink, using the packages TeachingDemos and Laplaces-
Demon (Snow 2020; Hall et al. 2021). It should be noted 
that one of the population sample sizes used in this analy-
sis, St. Lucie Reef, was lower than most recommendations 
for estimations of migration (Wilson and Rannala 2003; 
Meirmans 2014).

Genetic diversity and FST identified across most likely 
K

SNPs were filtered to only include those present in all 
the identified K genetic clusters after the NGSadmix 
population structure analysis was conducted. Individu-
als were considered to belong to a genetic lineage if they 
had > 75% likelihood to a putative lineage (Fifer et al. 
2022). This was performed for both SNPs and all RAD 
loci (i.e., variant and invariant loci), using the sites flag 
in ANGSD. To compare genetic clustering by regional 
population vs. lineage, a dendrogram was generated in the 
same manner as described previously, but with samples 
colored by lineage.

Across these putative lineages, heterozygosity was cal-
culated across all loci in R using ANGSD outputs (Kor-
neliussen et al. 2014; https://​github.​com/​z0on/​2bRAD_​
denovo). Inbreeding coefficients for all samples were cal-
culated using the software NgsRelate (Korneliussen and 
Moltke 2015). Differences in heterozygosity and inbreed-
ing coefficients among lineages, as well as depth distribu-
tion (with clones re-included for only this depth analy-
sis), were assessed using one-way ANOVAs. Tukey’s tests 
were run as post hoc analysis for significant ANOVAs 
using the package rstatix v0.7.0 (Kassambara 2021). 
Pairwise FST values for each lineage were also calculated 

using the same methods described previously to compare 
to those calculated across regional populations.

Symbiodiniaceae classification

The number of sequences that aligned to each of the four 
Symbiodiniaceae genera in the metagenomic reference was 
counted for each individual, serving as a proxy of relative 
abundances for the four Symbiodiniaceae genera in each 
sample (Manzello et al. 2019). This analysis was conducted 
on both the clones-included and clones-removed datasets to 
examine if algal symbiont communities varied among clonal 
coral hosts.

Results

Genome alignment and clonality

Sequencing produced a total of 231 million raw reads before 
filtering, with an average of 2.4 million reads for each sam-
ple. After the removal of PCR duplicates, trimming, and 
quality filtering, 148 million reads remained with an average 
of 1.5 million reads per sample. Three unique samples failed 
to sequence, two from West Palm and one from Boynton 
(Table 1). The average alignment rate to the genome for all 
samples was 68.85%, with a range of 15.43–92.16%; the 
average alignment for samples that were retained for analy-
sis (see below) was 86.55%, with a range of 66.89–92.16% 
(Supplemental Table 1). Three of the 90 individuals sampled 
were identified as the green/yellow color morph (one each 
at Jupiter, West Palm Beach, and St. Lucie). The low abun-
dance of green/yellow colonies in SEFL limits any infer-
ences relative to color that we could make with these data, 
and so this factor was not considered in subsequent analyses.

Fig. 2   Cluster dendrogram based on Identity-by-State matrix. Sam-
ple population is denoted by color, asterisks denote technical repli-
cates. The dashed red line indicates the minimum genetic distance 
threshold for calling clonal individuals or groups and was determined 

by the lowest level at which the technical replicate groups were pre-
sent. The nine clonal groups are labeled A–I directly above the cor-
responding cluster

https://github.com/z0on/2bRAD_denovo
https://github.com/z0on/2bRAD_denovo
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From the cluster dendrogram, nine clonal groups were 
identified for a total of 51 naturally occurring clones 
(Table 1, Fig. 2). Each set of technical replicates were a 
part of one of these nine clonal groups. The overwhelming 
majority of the samples in each clonal group were from the 
same sampling site; however, two of the groups contained 
clones collected from different sites; group “E” included 
16 samples from St. Lucie and four from West Palm, and 
group “G” included one sample from West Palm and four 
from Jupiter (Fig. 2). After the removal of all but one sample 
in each clonal group using methods described earlier, 36 
unique individuals were retained for subsequent analyses 
(Table 1). The rate of clonality was highest at St. Lucie, 
with only three unique genotypes identified across the 30 
samples, and lowest in Boynton, with 10 unique genotypes 
identified across the 14 samples (15 sampled, one failed to 
sequence) (Table 1, Fig. 2). After rerunning the clones and 
technical replicates-removed dataset in ANGSD, a total of 
13,338 SNPs were identified.

Population structure

The AMOVA identified significant differences among the 
five sample populations, which explained 2.75% of the 
variation across samples (SS = 10,419.15, p = 0.001). The 
dbRDA indicated some overlap among Jupiter, West Palm, 
and Boynton sample populations while St. Lucie and Ft. 
Lauderdale were more distinct (Fig. 3). Three variables were 
retained for the model: depth, latitude, and nitrate, as well as 
the three PCs acting as a proxy for population evolutionary 
history. Nitrate (correlated with mean bottom light levels and 
chlorophyll levels) and the population structure PCs were 
removed as they were not selected for in the best model. The 
percent variation by depth (correlated with current veloc-
ity and mean bottom salinity) and latitude (correlated with 
cloud cover, dissolved oxygen, sea surface primary produc-
tivity, and sea surface temperature), respectively, is 5.09 and 
4.81%, with a global variation of 9.06% (Table 2).

Significant pairwise differentiation between all popula-
tions except St. Lucie and West Palm was identified by the 
FST values (Fig. 4). Overall, Ft. Lauderdale had the highest 
FST values. Jupiter and Ft. Lauderdale populations were the 
most highly differentiated from each other (FST = 0.070).

Fig. 3   Distance-based redundancy analysis results from Identity-by-
State matrix showing clustering of samples by population, coded by 
color. Individual samples are represented by transparent circles while 
larger, solid circles represent the population centroids. Ellipses for 
each population (with the exception of the St. Lucie population due 
to low sample size) were calculated using multivariate t-distribution. 

The percent variation explained by population level differences cal-
culated by the analysis of molecular variance is listed in the bottom 
right. Total variation explained by each axis is indicated. Vectors rep-
resent their corresponding environmental variables relative contribu-
tion to the variation displayed on the axes: latitude of sample collec-
tion and depth

Table 2   Environmental 
variables assessed in the 
dbRDA

Variable Variance partition ANOVA

Df R2 Adjusted R2 SS F Pr(> F)

Depth 1 0.05092 0.02301 0.08212 1.8242 0.001
Latitude 1 0.04816 0.02017 0.07767 1.7204 0.001
All (global) 2 0.09061 0.03550 0.14613 1.6441 0.001
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CLUMPAK analyses identified three as the optimal 
number of genetic lineages, while two of StructureSelec-
tor’s reported K estimators selected K = 2, and the other 
two selected K = 3 (Fig. 5). After review of both NGSad-
mix plots, K = 3 was selected for subsequent interpretations 
and analyses given that it was the most frequently selected 
model. The first lineage (green) is relatively well distributed 
while the third (purple) is almost completely exclusive to Ft. 
Lauderdale. The northernmost site, St. Lucie, is dominated 
primarily by one lineage (green), and this same lineage was 
also predominant in the West Palm and Boynton popula-
tions. Jupiter is almost equally split in dominance by the 
first (green) and second lineage (pink), and the southernmost 
site in Ft. Lauderdale is primarily composed of the third 
(purple) lineage.

Genetic diversity and FST of lineages

Filtering to only retain SNPs present in all K genetic clusters 
resulted in 3228 SNPs. The cluster dendrogram colored by 

K showed clear clustering by the assigned K, with admixed 
individuals falling between or close to the intersection 
between lineages (Fig. 6). There was a significant difference 
in depth distributions across lineages, with the pink lineage 
comprised of significantly deeper samples than the green or 
purple lineages (Fig. 7a, one-way ANOVA, F(2,75) = 10.14, 
p < 0.001; Tukey’s test, both p < 0.001). It should be noted 
that depth was confounded with site in this study (Table 1). 
The green lineage had significantly higher levels of heterozy-
gous RAD loci as compared to the purple and pink lineages 
(Fig. 7b, one-way ANOVA, F(2,25) = 11.4, p < 0.001; Tuk-
ey’s test, p < 0.001 and p = 0.043, respectively). None of the 
lineages had significantly different inbreeding coefficients 
from each other (Fig. 7c, one-way ANOVA, F(2,29) = 0.749, 
p = 0.482). The FST between the green and purple lineages 
was highest at 0.065, followed by the pink and purple line-
age FST of 0.053, and the lowest was between green and pink 
lineages at 0.044.

Fig. 4   Pairwise fixation index values (FST) for all populations sampled displayed as a heat map. Statistically significant values are bolded (post 
FDR-correction, p < 0.05)

Fig. 5   StructureSelector’s and CLUMPAK’s calculated K showing 
three genetic lineages (represented by green, pink, and purple) of 
Porites astreoides present among the populations sampled. Each col-
umn represents one sample, and the proportion of each column filled 
with the color representing each lineage indicates the probability of 

membership to that lineage. Some individuals were from a clonal 
group, and the number of total individuals from that clonal group 
is represented by the numbers present at the base of the column; in 
some cases, this collapsed individuals from different sites into a col-
umn (see Fig. 2)
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Population connectivity

BayesAss analyses reported generally low rates of recent 
migration (m) ranging from 2.2 to 6.1% among St. Lucie, 
Jupiter, West Palm, and Ft. Lauderdale. However, Boynton 
was identified as a significant source population with migra-
tion rates estimated at 15.6–22.2% from Boynton to West 
Palm, Jupiter, and St. Lucie (Figs. 8 and 9).

Symbiodiniaceae communities

On average, 5.77% of the high-quality reads aligned to 
the Symbiodiniaceae metagenome. Of these, an average 

of 90% aligned to the Symbiodinium genus (Supplemen-
tal Fig. 1). On the clones removed dataset, three sam-
ples were dominated by Cladocopium, and all samples 
had at least some amount of Symbiodinium, Breviolum, 
Cladocopium, and Durusdinium present. In all but two 
instances, all clones in each clonal group identified had 
nearly identical symbiont assemblages (< 5% difference in 
abundance present in each genus). In the first instance, one 
sample collected in St. Lucie that is a part of clone group 
“E” contained 36% Symbiodinium, 48% Cladocopium, 
and 16% Durusdinium, while the 19 other samples (four 
from West Palm, 15 from St. Lucie) in that clonal group 
contained ~ 95% Symbiodinium (Fig. 2). In the second 

Fig. 6   Cluster dendrogram based on Identity-by-State matrix, with identified clones removed. Assigned lineage is denoted by color, sample 
population is denoted by shape

Fig. 7   Box and whisker plots displaying depth distribution, heterozy-
gosity, and inbreeding across assigned lineages. a) depth of samples 
(with clones included) in each lineage, b) heterozygosity values cal-

culated across all loci, c) inbreeding coefficients. Asterisks denote 
significant pairwise comparisons between lineages
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instance, a sample collected from Jupiter that is a part of 
clonal group “I” contained a majority Cladocopium while 
the other two samples contained > 95% Symbiodinium.

It was also confirmed that there was no link between 
symbiont composition and color morph; all three of the 
previously mentioned yellow/green color morph individu-
als contained a majority (over 96%) Symbiodinium.

Fig. 8   Heat map of recent migration rates (m) inferred by BayesAss. Bolded numbers in each cell are estimates of m (mean of the posterior dis-
tribution) with uncertainty listed below (95% high posterior density [HPD] intervals). Gray cells indicate within-population retention rates

Fig. 9   Map of sample sites 
with arrows representing the 
levels of gene flow between 
populations. Circles are colored 
by population, as are arrows, 
indicating which population 
they originate from. Direction 
of arrows indicates the direction 
of gene flow, and width cor-
responds to the relative amount 
of gene flow. Only m values that 
had a > 0 lower 95% high poste-
rior density [HPD] are displayed
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Discussion

This study found high rates of clonality of P. astreoides 
across all sites, with the highest proportional abundance of 
clones at St. Lucie (Table 1). Significant historical struc-
turing of populations from St. Lucie to Ft. Lauderdale was 
observed as well and may be partially explained by associ-
ated variation in depth, latitude, and other spatial and envi-
ronmental variables. However, there are also indications of 
relatively recent gene flow (over the past two–three gen-
erations), especially from Boynton to northern populations 
(Figs. 6, 7, 8). Symbiont communities were dominated by 
the genus Symbiodinium, which aligns with other studies 
of shallow (< 30 m) populations of P. astreoides (Thornhill 
et al. 2006; Kenkel et al. 2013; Serrano et al. 2016; Lenz 
et al. 2021). Overall, these data suggest that the relative suc-
cess observed for P. astreoides in southeast Florida has been 
driven by the proliferation of a few genotypes which have 
become selected for under recent environmental conditions.

The average clonality rate found across sites in this study 
was 60%, which is high when compared to some other stud-
ies. However, in other comparable P. astreoides connectivity 
studies across the Caribbean, the rates of clonality meas-
ured seem to be correlated with the proximity of sampled 
colonies. Lower clonality rates around an average of 10% 
have been observed in studies which sampled colonies at dis-
tances of 5 m to 20 m apart from one another (Serrano et al. 
2016; Gallery et al. 2021), while another study that sampled 
at roughly the same resolution as ours (at least 1 m, albeit 
with many of our samples collected farther apart than that) 
observed higher rates at 18% (Riquet et al. 2021). While 
exact distances among sampled colonies on a reef were not 
measured in this study, in the future these data may help 
identify how rates of clonality vary across different spatial 
scales.

Comparatively, a study on the branching Porites divari-
cata on an atoll in Belize identified an even higher rate of 
clonality, 92.6%, across 136 colonies over a ~ 500 m area 
(Lord et al. 2023). Like our study, they found that clones 
were primarily restricted to the same sub-sites sampled 
(within 100 m), however some were identified at distances 
of a few hundred meters apart. It should be noted that P. 
divaricata has been known to asexually reproduce through 
fragmentation (McDermond et al. 2014); however, due to 
their existence in a more protected mangrove habitat the 
authors proposed parthenogenesis to be more likely the main 
contributor to this pattern. While this sampling and analysis 
was more intensive across a smaller spatial scale than our 
study, it provides additional evidence that rates of asexual 
reproduction may be occurring more frequently than has 
previously been documented in Caribbean Porites species.

The high rates of clonality observed at our sites in 
southeast Florida have several implications, particularly 

at St. Lucie. First, it partially explains the recent rapid 
proliferation of P. astreoides colonies on St. Lucie. St. 
Lucie is likely not receiving a high influx of larvae from 
other populations recruiting to the reef, although there is 
evidence of connectivity with the Boynton population. 
High rates of self-fertilization by a few successful indi-
viduals, or increased asexual reproduction via fragmenta-
tion or parthenogenesis, may have occurred over recent 
years at St. Lucie. To further characterize the reproductive 
patterns driving the population dynamics and high rates 
of clonality at St. Lucie, histology could be utilized to 
quantify sex ratios and fecundity of colonies, as well as 
in situ larvae collection in combination with parentage 
analyses (Brazeau et al. 2005). Additionally, the observed 
high rate of clonality at St. Lucie forced a smaller usable 
sample set to assess connectivity for this study due to mul-
tiple analyses requiring the exclusion of clones to meet the 
necessary assumptions. Nonetheless, accurate conclusions 
can still be drawn from these results because ascertain-
ment bias with low sample sizes (2–6) is not likely to be 
an issue so long as there is a high number of SNPs (i.e., 
in the thousands) which we were able to generate in this 
study (Willing et al. 2012; Nazareno et al. 2017). Finally, 
the presence of clones across adjacent sites (clonal groups 
were present across St. Lucie and West Palm [~ 80 km] as 
well as Jupiter and West Palm [~ 25 km]) is in themselves 
potential evidence that P. astreoides can disperse over sev-
eral kilometers in this region. Whether this is occurring 
over a single generation through long-distance dispersal 
of parthenogenetically produced larvae, or over many gen-
erations through a stepping-stone method, remains to be 
understood.

This is the first study to assess the population genetics 
of P. astreoides, or any brooding stony coral, across the 
northern portion of Florida’s Coral Reef. In the only other 
study of connectivity of a stony coral in the northern por-
tion of Florida’s Coral Reef, a broadcast spawning species, 
Montastraea cavernosa, was sampled across the same sites 
used in this study and were genotyped using microsatellites 
(Dodge et al. 2020). Both species exhibited high levels of 
differentiation between the Ft. Lauderdale populations and 
all other sites; however, for P. astreoides the Jupiter popula-
tion was also highly differentiated (Fig. 3). Overall, popula-
tions of P. astreoides appear to have more genetic structure 
in this region than M. cavernosa, as might be expected for a 
brooder, and greater spatial differentiation than P. astreoides 
populations sampled on other Florida reefs (Serrano et al. 
2016; Gallery et al. 2021).

While there is significant structuring across most sites, 
St. Lucie and West Palm populations were not differenti-
ated, as indicated by the dbRDA, FST values, and admixture 
analyses (Figs. 3, 4, 5), suggesting that the St. Lucie P. astre-
oides population has historically been connected to the West 
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Palm population. Based on both migration modeling results 
and the lower FST values observed, Boynton appears to be a 
recent source population for all populations sampled north 
of it (Figs. 4, 8, and 9). This can possibly be explained by 
the general northward flow of the Florida Current. The green 
lineage exhibited significantly higher levels of heterozygo-
sity, and the majority of genetically unique individuals in 
all populations belonged to this lineage, with the exception 
of Ft. Lauderdale.

The assumed northward flow of larvae from Boynton 
along the Florida Current does not adequately explain why 
the Ft. Lauderdale population is genetically isolated, as 
evidenced by its overall connectivity and structure results. 
The Ft. Lauderdale region lacks apparent physical barriers 
that would prevent northern or southern transport of larvae, 
and several modeling and population genetic studies pro-
vide evidence of larval dispersal and connectivity from Ft. 
Lauderdale to northern and southern reefs for other species 
(Baums et al. 2010; Bernard et al. 2019; Frys et al. 2020). 
It is possible that the relative isolation of this Ft. Lauderd-
ale P. astreoides population is driven by its location on the 
inner reef bank, while all other sample sites were located on 
outer reef banks. Significant counter currents and eddies in 
this region have been characterized and may result in differ-
ent directionality of larval transport on inner and outer reef 
banks (Fig. 1; Lee and Mayer 1977; Shay et al. 2002; Solo-
viev et al. 2003, 2017). Overall, it is difficult to make broad 
inferences about biophysical barriers in the northern portion 
of Florida’s Coral Reef, since the majority of published stud-
ies of sessile, benthic species focus on connectivity south of 
Ft. Lauderdale and primarily on the Florida Keys, occasion-
ally including sites in Palm Beach County (López-Legentil 
and Pawlik 2009; Baums et al. 2010; DeBiasse et al. 2016; 
Serrano et al. 2016; Drury et al. 2017; Bernard et al. 2019; 
Griffiths et al. 2020; Gallery et al. 2021; Rippe et al. 2021). 
In the Lower Florida Keys, Kenkel et al. (2013) found sig-
nificant genetic divergence between inshore and offshore P. 
astreoides populations, thought to be driven by differences 
in thermotolerance of the genotypes. It is possible that some 
pre- or post-settlement barriers exist in Ft. Lauderdale such 
as thermal regimes, perhaps even some that are specific to 
coral larvae (M. cavernosa larvae showed significant dif-
ferentiation at this site in the previously mentioned study, 
Dodge et al. 2020), which do not cause limitations for the 
dispersal of other marine benthic species for some reason. It 
is also possible that the genetic structuring of Ft. Lauderdale 
samples in this study would present differently in the context 
of a spatially larger dataset.

Regarding other P. astreoides populations assessed in 
Florida, Gallery et al. (2021) sampled P. astreoides in the 
Florida Keys and found evidence of panmixia throughout 
the Keys as well as high levels of gene flow, exhibiting 
overall stronger connectivity than we observed among P. 

astreoides populations in southeast Florida. Another study 
examined horizontal and vertical connectivity of P. astre-
oides populations across the Caribbean and found that shal-
low sites in the Florida Keys and the US Virgin Islands were 
highly connected to each other but differentiated from those 
in Bermuda (Serrano et al. 2016). Populations in Florida 
also exhibited significant depth-dependent genetic struc-
turing similar to what we identified in this study; however, 
they were able to use a paired “shallow” (< 10 m) “deep” 
(> 25 m) design whereas we sampled distinct sites which 
differed by depth (3–22 m, Serrano et al. 2016). It should 
be noted that both of these studies utilized microsatellites 
markers as opposed to SNPs. Microsatellite markers have 
a reduced ability to identify fine-scale genetic differentia-
tion among populations, when compared to large suites of 
SNP markers, and may have contributed to the higher local-
ized levels of connectivity observed compared to this study 
(Sturm et al. 2020). Understanding dispersal and connec-
tivity of species like P. astreoides is important as brooding 
coral species are becoming increasingly dominant on many 
Caribbean reefs. While brooding corals typically produce 
larvae that are competent to settle shortly after release and 
often have high levels of self-recruitment on reefs, brooders 
also have potential for long dispersal distances (Carlon and 
Olson 1993; Jones et al. 2009). In addition to the reports 
of panmixia for P. astreoides discussed above, Siderastrea 
radians populations in Brazil showed little genetic structur-
ing over a range of more than 1600 km (Neves et al. 2008). 
Likewise, studies of A. agaricites across the Flower Garden 
Banks and the Caribbean (Brazeau et al. 2005) found simi-
lar results to Neves et al. (2008), as did a larger scale study 
of multiple brooding and spawning species along the Great 
Barrier Reef (Ayre and Hughes 2000), and a small-scale 
study in Puerto Rico on A. lamarcki (Hammerman et al. 
2018). A connectivity study of Favia fragum identified sig-
nificant differentiation across reefs in Barbados, Jamaica, 
Panama, and Bermuda, but relatively high levels of gene 
flow within the reefs sampled, further supporting the idea 
that the dispersal of brooded larvae does tend to be more 
limited than broadcast spawners, but can have localized high 
levels of connectivity (Goodbody-Gringley et al. 2010).

Overall, our results indicate that it is possible that a 
combination of sufficient genetic diversity provided by 
historic populations and the life history traits that sup-
port P. astreoides ability to relatively rapidly proliferate, 
including the production of clones, are aiding the species 
in filling reef niche space left by the mortality of other 
stony coral species (Estrada-Saldívar et al. 2019). The 
frequency of clones, and the apparent success of a few 
genotypes, could potentially foretell a short-lived “win” if 
low genetic diversity impacts population resilience. How-
ever, the reproductive and proliferation strategies of scle-
ractinian corals are diverse and still not fully understood 
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(Hughes and Jackson 1980; Dubinsky and Stambler 2011), 
and through newly described mechanisms such as heritable 
somatic mutations (Vasquez Kuntz et al. 2022), commu-
nities may be able to maintain diversity and persist from 
populations which would not typically be considered via-
ble for other species or in other environments.

To better understand connectivity and population persis-
tence of P. astreoides and other brooding coral species with 
similar life histories on Caribbean reefs, further investigation 
using both high resolution population genetics and larval dis-
persal models is needed. As these species continue to emerge 
as apparent ecological “winners” in this region, the factors that 
may be driving their dispersal and success may be informa-
tive for regional scale approaches to coral management and 
restoration. Additionally, a better understanding of what bio-
physical factors influence larval dispersal of these corals on 
the northern portion of Florida’s Coral Reef are important, as 
these often-overlooked reefs may be crucial sources of larvae 
and genetic diversity, both locally and for other regions across 
the Caribbean.
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