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Abstract
At over 1000  km in length, the Mesoamerican Reef 
(MAR) is a near-continuous reef system within four dif-
ferent countries: Mexico, Guatemala, Belize, and 
Honduras. MAR is the largest reef system in the Northern 
Hemisphere and is comprised of fringing and barrier reefs 
and offshore atolls, which extend into deeper water where 
mesophotic coral ecosystems (MCEs; 30–150 m depth) 
are found. Scientific studies of MCEs in the MAR began 
in the 1970s, and despite a rapid increase in marine 
research throughout the region in recent years, MCE eco-
logical research has been restricted to a few locations and 
has been focused on hard (scleractinian) corals and fish 
communities. Hard corals have been documented at a 
maximum depth of 102  m in the MAR.  However, hard 
corals do not represent the dominant benthic community 
at mesophotic depths in most cases. The benthic organ-
isms providing structural habitat on many of the known 
MAR MCEs are octocorals, sponges, black corals, and 
calcareous macroalgae. Studies on MAR fish communi-
ties showed that a large proportion of fish species are 
found on both shallow reefs and MCEs. The limited data 
available suggests that MCEs are likely widespread along 

the MAR.  There is evidence of the negative effects of 
fisheries, sedimentation, harvesting of black corals, and 
invasive lionfish on MAR MCEs. Improved identification 
and increase of biological and ecological studies of 
MCEs, coupled with an extension of scope to include 
mesophotic habitats in managed areas, should be under-
taken to enhance their protection in the region.
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5.1  Introduction

The Mesoamerican Reef (MAR) is a coral reef ecosystem 
approximately 1000 km long located on the western margin 
of the Caribbean Sea. It extends south from Cabo Catoche, 
Mexico, at the northern tip of the Yucatan Peninsula and runs 
along the coasts of Belize and Guatemala, before ending at 
the Bay Islands and fringing coastal reefs of Honduras 
(Fig. 5.1). The MAR is the largest reef system in the Northern 
Hemisphere and the second largest in the world, surpassed 
only by the Great Barrier Reef in Australia. The northern 
MAR consists of 300  km of fringing reefs along the east 
coast of the Yucatan Peninsula and extensive reefs around 
Cozumel Island and the Banco Chinchorro Atoll (Ardisson 
et al. 2011). The Belizean section at the center of the MAR 
spans approximately 250  km from Ambergris Caye to the 
Gulf of Honduras and encompasses a large barrier reef with 
hundreds of cays, along with three atolls seaward of the bar-
rier reef (Turneffe Atoll, Glover’s Reef, and Lighthouse 
Reef) (Rützler and Macintyre 1982). Guatemala has the 
shortest MAR coastline, only 150 km long, with large river 
outflows limiting reef development (Wilkinson 2008; Kramer 
et al. 2015). In Honduras, the MAR runs from east to west, 
with fringing reefs along the Honduran Caribbean north 
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coast, and extensive reef dominated offshore banks. Reefs 
are also associated with continental shelf islands (e.g., Cayos 
Cochinos) and islands on the continental shelf edge (e.g., the 
Bay Islands of Roatan, Guanaja, and Utila).

The MAR region comprises a vast linked system of 
coastal habitats and is considered a biodiversity hotspot. The 
MAR has high ecological, aesthetic, and cultural and eco-
nomic value while sustaining more than two million people 
from four countries (Chollett et al. 2017), making it an inter-
national conservation priority. In this chapter, we review the 
current state of knowledge of mesophotic coral ecosystems 
(MCEs; 30–150 m depth) in the MAR region.

5.1.1  Research History

The first MAR scientific cruises recording marine diversity 
began in the late nineteenth century. Hundreds of species, 
including corals and fishes from depths down to 3000  m, 
were described based on the collections by the US Coast 
Survey vessel Blake (1877–1880) expeditions. However, it 
wasn’t until the 1970s that extensive taxonomic and ecologi-
cal studies of MAR reefs began (Miloslavich et al. 2010). 
Observational studies using submersibles constitute the ear-
liest modern qualitative analyses conducted on MAR MCEs 
(James and Ginsburg 1979). These early surveys often 

Fig. 5.1 Mesoamerican Reef (MAR) regional map. The red line on the inset map indicates the region shown in the main map
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reported the zonation of different taxonomic groups across a 
depth gradient and included interesting species-specific 
observations alongside more general reef geomorphology. 
The first dedicated MAR MCE biodiversity survey con-
ducted was fish observations reported by Colin (1974), who 
recorded many unidentifiable fish species off Belize. In the 
1990s, shallow-reef surveys began to extend into the upper- 
mesophotic zone (30–60 m), for example, in Roatan (Fenner 
1993) and in Cayos Cochinos (Guzman 1998). Also at this 
time, in Cozumel, species-specific studies on black corals 
(Antipatharia) were conducted driven by harvesting pres-
sures for the jewelry industry (Padilla and Lara 2003; Padilla 
Souza 2004). More recent work has used combinations of 
technical diving, remote camera drops, and submarines to 
survey detailed fish and benthic community structure on 
MCEs in Mexico (Gress et al. 2018) and Honduras (Andradi-
Brown et  al. 2016c, d; Gress et  al. 2017; Laverick et  al. 
2017). Other recent work has considered biases in fish detec-
tion caused by survey technique choice on MCEs in Honduras 
(Andradi-Brown et al. 2016d, 2017a). Despite this growing 
body of MAR MCE research, investigations have been con-
fined to a few locations, and no studies have addressed 
whether recorded biodiversity patterns are representative of 
the whole region.

5.2  Environmental Setting

Sedimentation is a major problem for the MAR as a whole, 
which is exposed to terrestrial runoff annually (Chérubin 
et  al. 2008). MAR health is affected by the proximity to 
shore, and the levels of riverine and sediment input, caused 
by land clearance activities (Harborne et  al. 2001). At the 
southern end of the MAR (Fig.  5.1), reefs are subject to 
twice-yearly pulses of terrestrial runoff, caused by both the 
initial runoff impact itself, but then also by this runoff being 
cycled in a gyre that returns the pollutants to the reefs several 
months later (Paris and Chérubin 2008). Off Guatemala, the 
most established and best-studied reefs are the carbonated 
banks of Punta Manabique, which are dominated by 
sediment- tolerant coral species, because of the high sedi-
ment input (Wilkinson 2008; Kramer et al. 2015). The coast-
line of the Yucatan Peninsula lacks terrestrial freshwater 
input from surface rivers, as its limestone structure results in 
an outflow of freshwater through underground river systems 
accessible through sinkholes (Spalding et al. 2001). Although 
it is not clear how this affects sedimentation rates on the 
northern MAR.

Other environmental parameters are poorly surveyed in the 
MAR. Currents in the region can be strong, especially in the 
north, with average speeds of 0.61 and 0.54 m s−1 at 35 m 
depth and 0.54 and 0.47 m s−1 at 105 m depth when measured 
at specific points in 2006 and 2007, respectively (Muhling 

et al. 2013). In Belize, on the reef off Carrie Cay in June, pho-
tosynthetically active radiation readings of 28.1 W m−2 and 
17.1 W m−2 were recorded in 30 m and 39 m depths, respec-
tively, compared to 86.6 W m−2 in 12 m (Shick et al. 1996).

Large-scale reef geomorphology changes across the MAR 
affect the habitat availability for MCEs in different parts of 
the region. On the northern MAR, the insular shelf area is 
narrow off the western coast of Cozumel, at around 500 m 
width, but wide, at 2000 m width, off the northern and east-
ern coast (Günther 1990; Muckelbauer 1990) (Fig. 5.2). For 
the central MAR, the continental side of the barrier reef is 
separated from the mainland by a lagoon which ranges from 
15 to 50 km in width and extends to 65 m in depth (Purdy 
et al. 1975; Miller and Macintyre 1977; James and Ginsburg 
1979). The central MAR also encompasses four atolls, which 
have steep exposed drop-offs that extend to submarine can-
yons and the Cayman Trench (Etnoyer et  al. 2015). The 
southern MAR is composed of coastal fringing reefs, reef 
banks on the approximately 75-km-wide continental shelf, 
and a series of reefs associated with islands on the shelf edge 
(Harborne et al. 2001).

In Cozumel, three terraces can be found on the western 
shelf, at 5, 10, and 20 m depth, where the insular shelf edge 
begins (Muckelbauer 1990). On the eastern side, terraces 
have been observed at 3, 10, 20, 30, and 50 m depth. Below 
the western side terraces, the insular slope drops at an angle 
of 75–80° to a depth of 400 m, while on the eastern side, it 
drops near vertical to a depth of >1000  m (Muckelbauer 
1990). In Belize, James and Ginsburg (1979) performed 
multiple submersible dives near Glover’s Reef and Tobacco, 
South Water, and Queen Cays down to depths of 300  m. 
Through exploration of these reefs, James and Ginsburg 
(1979) described the morphology of two distinct styles of 
platform margins found in the central MAR: (i) reef to shal-
low basin and (ii) reef to oceanic trough. They found that 
reef margins near a shallow basin typically exhibited a steep 
transition below spur-and-groove structure down to a step at 
approximately 30–37 m depth, except near South Water Cay, 
where the step is absent. Continuing seaward from the base 
of the step, a sandy slope progressively transitions to the top 
of a wall. In some locations, they observed a break in the 
slope near 45 m (Fig. 5.2). Belizean mesophotic depths near 
oceanic troughs either have a similar profile to shallow basin 
reef sites or, for the east side of Glover’s Reef, lack a distinct 
step and sandy slope. Instead, the east side of Glover’s Reef 
has a convex brow at 25–60 m depth, where a vertical wall 
begins and extends >100 m depth. On the southeastern mar-
gin of Glover’s Reef, the seaward portion of the reef exhibits 
a 45° slope, which terminates in a vertical wall at 30–40 m 
depth (Fig. 5.2).

In Honduras, on the south shore of Utila, the third largest 
Bay Island, shallow reefs form a spur-and-groove system, 
which transitions from a gentle reef slope to a flat seabed at 

5 The Mesoamerican Reef



74

approximately 30–40 m depth (Andradi-Brown et al. 2016c). 
Off the north shore of Utila, there is an extensive platform at 
6 m depth, with the reef dropping near-vertically from approx-
imately 8 m to >100 m depth. Several terraces, approximately 
20  m wide, have been observed to break this steep wall at 
depths of 30, 55, and 70 m (Andradi-Brown et al. 2016b). On 
Roatan, at the southwest end of the island, there is a shallow 
terrace from the island edge that gently slopes to approxi-
mately 10 m depth, where the edge of the continental shelf 
edge steeply drops (Mehrtens et al. 2001; Fig. 5.2). Off the 
northwest of the island, there is an  extensive terrace approxi-
mately 500 m wide at a depth of 40–60 m (Fig. 5.2).

5.3  Habitat Description

Patterns in reef geomorphology affects the MCE communi-
ties found across the MAR at different depths. Many MCE 
communities are found far from land on large continental 
shelf areas. This includes on reef banks, such as off Honduras 
(Harborne et al. 2001), and also on extensive patch reef com-
munities, which have been observed in the Belize Reef 
lagoon (James and Ginsburg 1979;  Miller and Macintyre 
1977). In some cases, coastal shallow fringing reefs, exhibit-
ing spur-and-groove structures, transition into MCE patch 

reef communities. For example, off the south shore of Utila, 
patch reefs in the 35–60 m depth range vary in area between 
1 and 500 m2, and some raise to heights up to 3 m above the 
surrounding seabed (Fig.  5.3). These Utilian patch reefs 
share many species with the adjacent reef slope at 25–30 m 
depth (Andradi-Brown et al. 2016c). Shallow fringing reefs 
extend along most of the MAR coastline; however, little 
information on adjacent MCE communities is available.

On the steep walls associated with shelf edges, the most 
extensive MCEs have developed on terraces. For example, on 
the eastern side of Cozumel, the terraces at 30 and 50 m depth 
have hard coral (scleractinian) communities (Muckelbauer 
1990), while off the north shore of Utila, extensive meso-
photic hard coral communities have been recorded on ter-
races at depths of 30, 55, and 70 m (Andradi- Brown et al. 
2016b; Laverick et  al. 2017). Terraces, however, do not 
always contain well-developed MCEs. In northwest Roatan, 
the extended platform at 40–60 m depth is mainly covered 
with sand and a few scattered small MCE patch reefs, while 
at the terrace edge, MCEs are more extensive (Fig. 5.4b).

MCE communities can also form as continuous reefs 
across the depth gradient, for example, on the steep slopes on 
the western side of Cozumel (Gress et al. 2018) and in south-
west Roatan (Fig.  5.4a). Steep slopes and walls rapidly 
reduce light levels available for benthic organisms (Brakel 
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1979; Baker et al. 2016). Therefore, although hard corals are 
present, MCEs on steeper slopes and walls tend to be domi-
nated by heterotrophic feeding organisms such as sponges, 
gorgonians, and black corals, which provide most of the 
structural habitat (Gress et al. 2018).

5.4  Biodiversity

5.4.1  Macroalgae

With the exception of a few locations, little is known about 
algal coverage on MCEs in the MAR.  Macroalgal cover 
declines with depth on reefs around Utila, Honduras, for 
example, from 45% of benthic habitat cover at 15 m to 8% at 
40 m (Andradi-Brown et al. 2016c), and is near-absent at 70 
and 85 m (Laverick et al. 2017). However, this decline may be 
particularly severe on Utila because of the rapid decline in 
hard substrata availability for the majority of surveyed MCE 
communities (Andradi-Brown et  al. 2016c). In contrast, in 
Cozumel, Mexico, macroalgae broadly increases in coverage 
between 15 and 55 m depth (Gress et al. 2018). For example, 
adjacent to tourist developments, fleshy and calcareous mac-
roalgae increased from 5% and 12% at 15 m to 21% and 24% 
at 55 m, respectively. Within the Cozumel protected area, cal-
careous macroalgae increased from 22% at 15 m to 39% at 

55 m, though fleshy macroalgae declined from 10% at 15 m 
to 5% at 55 m. Much of the increase in calcareous macroalgae 
with increased depth is driven by large areas of Halimeda 
spp. on MCEs (Gress et al. 2018). In Belize, Halimeda spp. 
commonly grow on sediment slopes and on rock surfaces to a 
depth of approximately 75 m. Below 75 m, Halimeda spp. are 
rare or absent, although a solitary deep attached specimen of 
the genus was observed at 110 m (James and Ginsburg 1979). 
Crustose coralline algae (CCA) are common on MCEs 
formed on vertical walls in Belize from 40 to 110 m. From 75 
to 90 m, CCA covers an estimated 30–50% of the exposed 
benthos, and the deepest known CCA in the region was 
reported at 250 m (James and Ginsburg 1979).

The most detailed study of mesophotic macroalgae has 
been conducted on upper MCEs (30–60  m) in Belize. To 
assemble a list of marine plants found around Glover’s Reef, 
Tsuda and Dawes (1974) collected specimens from six loca-
tions at 30–40 m depth. They recorded at least 15 species of 
green algae, 5 species of brown algae, and 8 species of red 
algae from mesophotic depths (Table 5.1). In addition, near 
Carrie Bow Cay, algae were collected from two seaward sites 
on the barrier reef at depths of 30–40 m (Norris and Bucher 
1982). The most abundant algae found on the fore-reef slope 
of Carry Bow Cay to 40  m were Lobophora variegata, 
Stypopodium zonale, and Anadyomene stellata; Galaxaura 
obtusa and Kallymenia limminghei were less common but 

Fig. 5.3 Many MAR MCEs are dominated by sponges, calcareous macroalgae, black corals, and gorgonians as illustrated in this MCE patch reef 
approximately 60 m depth off the south coast of Utila, Honduras (Photo credit: Ally McDowell)
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Table 5.1 Documented algae and scleractinian corals reported on MAR MCEs

Phylum Family Species
Reported observations
Mexico Belize Honduras

Cnidaria Acroporidae Acropora cervicornisa X
A. palmataa X

Agariciidae Agaricia spp. X X X
A. agaricites X
A. fragilis X
A. grahamae X X
A. lamarcki X X
A. tenuifolia X
A. undata X X
Helioseris cucullata X X X

Astrocoeniidae Madracis sp. X
Madracis auretenra X
M. formosa X
M. pharensis X
M. senaria X
Stephanocoenia intersepta X X X

Meandrinidae Dichocoenia stokesii X
Eusmilia fastigiata X
Meandrina meandrites X X

Merulinidae Orbicella sp.b X
Montastraeidae Montastraea cavernosa X X X
Mussidae Colpophyllia natans X X

Diploria spp. X
D. labyrinthiformis X
Manicina areolata X
Mycetophyllia aliciae X X
M. danaana X
M. lamarckiana X X
M. reesi X
Pseudodiploria strigosa X X
Scolymia cubensis X
S. lacera X
S. wellsii X

Poritidae Porites spp. X
P. astreoides X X
P. divaricata X
P. furcata X

Scleractinia incertae sedis Solenastrea sp. X
Siderastreidae Siderastrea siderea X X X

Chlorophyta Anadyomenaceae Anadyomene gigantodictyon X
A. stellata X

Boodleaceae Phyllodictyon anastomosans X
Codiaceae Codium taylorii X
Halimedaceae Halimeda spp. X X

H. copiosa X
H. discoidea X
H. opuntia X
H. simulans X

Siphonocladaceae Dictyosphaeria cavernosa X
D. ocellata X

Udoteaceae Penicillus capitatus X
P. dumetosus X
Rhipocephalus phoenix X
Udotea conglutinata X
U. cyathiformis X
U. flabellum X

(continued)

5 The Mesoamerican Reef
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only found at deeper depths (Norris and Bucher 1982). There 
have also been sightings of a large bloom of Anadyomene 
gigantodictyon near Carrie Bow Cay, covering on average 
30% of the benthos at 51–60 m deep along approximately 
0.5 km section of MCE known as South Reef (Littler and 
Littler 2012). It is important for future work to expand algal 
surveys to another MAR MCE locations.

5.4.2  Anthozoans

Scleractinians. Zooxanthellate hard corals have been docu-
mented down to 55 m in Mexico (Gress et al. 2018), although 
research on deeper MCEs has not been conducted. The deep-
est recorded colonies to date in Belize are Montastraea cav-
ernosa at 95  m off Tobacco Cay and Agaricia fragilis at 
102  m on the eastern margin of Glover’s Reef (James and 
Ginsburg 1979). In Honduras, the maximum observed hard 
coral depths were 85 m in Utila (Laverick et al. 2017) and 
91 m in Roatan (Gress, per. obs.). Similar to other geographi-
cal regions (Baker et al. 2016), hard corals take on a more 
plate-like morphology or are found as small individual colo-
nies at increased depths (Graus and Macintyre 1976; Miller 
and Macintyre 1977; James and Ginsburg 1979).

Hard coral cover declines rapidly with depth along the 
slope on most studied MAR MCEs. For example, in Cozumel 
National Marine Park, hard coral cover was recorded as 9% 
at 15 m to 1% at 55 m (Gress et al. 2018). Around Utila, hard 
coral cover was 14% at 15 m but declined to 4% at 40 m 
(Andradi-Brown et  al. 2016c). However, on steeper more 
exposed reef walls around Utila, hard coral cover has been 
recorded as 8%, 2%, and <1% at 55, 70, and 85 m, respec-
tively (Laverick et al. 2017). Hard coral cover has not been 
quantified using transects on MCEs in Belize, though James 

and Ginsburg (1979) noted Orbicella annularis and Agaricia 
spp. between 37 and 45 m depth off Queen Cay grew in large 
overlapping plates, and constituted >25% of the benthic 
cover at all sites surveyed.

Around Cozumel, hard corals from the genera Helioseris 
and Agaricia were among the most common recorded at 
55 m; however, colonies were small on average, with MCEs 
dominated by sponges, gorgonians, calcareous algae, and 
black coral communities (Günther 1990; Gress et al. 2018). 
This characteristic of few hard corals with foliose and 
encrusting formations at upper-mesophotic depths was 
reported in early qualitative observations from the 1980s on 
the west side of Cozumel (Jordán Dahlgren 1988; Zlatarski 
2007). Other scleractinian species were documented in these 
early observations on Chinchorro Atoll and on the Mexican 
Caribbean mainland coast between 30 and 45  m depth 
(Table 5.1; Zlatarski 2007).

In Belize, James and Ginsburg (1979) observed hard coral 
species across the MCE depth gradient (Table  5.1). They 
reported Orbicella spp. and Agaricia spp. from 37 m down to 
the beginning of the wall at 65 m, followed by A. grahamae, 
A. fragilis, M. cavernosa, Madracis sp., Solenastrea sp., 
Stephanocoenia sp., and Mycetophyllia reesi at 70–80  m 
depth. On the upper margin of the mesophotic zone at 31 m, 
42 species of hard corals have been verified from field sam-
ples (Cairns 1982). Cairns (1982) noted finding Porites astre-
oides to depths of >28 m, M. cavernosa to >26 m, Dichocoenia 
stokesii to 31 m, Scolymia cubensis from 30 to 40 m, as well 
as Meandrina meandrites and Scolymia lacera commonly on 
the fore-reef slope down to 40 m. Survey transects conducted 
from the seagrass flats eastward to the outer fore-reef slope 
just north of Carrie Bow Cay demonstrated relatively abun-
dant plating colonies of M. cavernosa, O. annularis, 
Helioseris cucullata, and A. fragilis at 30  m (Rützler and 

Table 5.1 (continued)

Phylum Family Species
Reported observations
Mexico Belize Honduras

Ochrophyta Dictyotaceae Dictyota dichotoma X
Lobophora variegata X
Stypopodium zonale X

Sargassaceae Sargassum polyceratium X
Turbinaria tricostata X

Rhodophyta Champiaceae Champia parvula X
Corallinaceae Amphiroa hancockii X

A. tribulus X
Galaxauraceae Galaxaura obtusa X

G. rugosa X
Kallymeniaceae Kallymenia limminghei X
Rhodomelaceae Laurencia intricata X
Rhodymeniaceae Botryocladia pyriformis X
Solieriaceae Wurdemannia miniata X

aObservations only at 30–31 m in Chinchorro Atoll, Mexico, during 1983–1984 (Zlatarski 2007)
bOriginally reported as Montastraea annularis (James and Ginsburg 1979; Cairns 1982; Rützler and Macintyre 1982), which has since been 
divided into three species and revised as genus Orbicella

E. Gress et al.
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Macintyre 1982). While less abundant, A. agaricites, A. 
lamarcki, P. porites, P. furcata, Diploria labyrinthiformis, 
Colpophyllia natans, and Mycetophyllia danaana were all 
observed near 30 m in the vicinity of Carrie Bow Cay (Rützler 
and Macintyre 1982).

In Honduras, the most detailed mesophotic hard coral 
community composition analysis was conducted by Laverick 
et al. (2017) down to 85 m depth around Utila (Table 5.1). A 
total of 26 hard coral species were recorded on MCEs, with 
the majority of these species also found on shallow reefs. A. 
grahamae, A. undata, M. formosa, and M. senaria were only 
found below 25 m, while the only MCE coral species found 
exclusively deeper than 40 m was M. pharensis. In addition 
to those species, H. cucullata, M. cavernosa, Siderastrea 
siderea, and S. intersepta were also recorded reaching 70 m 
or deeper (Laverick et al. 2017). Also in Utila, there is evi-
dence that historically extensive Agaricia spp. colonies were 
present at 70 m depth, although the majority of these colo-
nies were dead when observations were conducted in 2015 
(Laverick et al. 2017). In Roatan, benthic surveys were con-
ducted by Mehrtens et al. (2001) down to 40 m, recording 
Agaricia spp., Porites spp., Diploria spp., and Montastrea 
sp. in the 30–40 m range.

Antipatharians. Black corals make up a major component 
of some MAR MCEs. In Cozumel, which has long been 
famed for its extensive MCE black coral populations, six 
black coral species have been recorded (Padilla Souza 2004). 
In Honduras, black corals have been observed on MCEs to 
>50 m depth around Barbareta Island (Fonseca et al. 2004), 
though their exact population density and composition has 
not been established. Around Cayos Cochinos, Honduras, 
five species of black coral have been recorded from surveys 
down to 35 m depth (Guzman 1998).

5.4.3  Sponges

Sponges have been poorly studied on most MCEs in the 
MAR. The few studies conducted suggest sponge cover on 
MCEs is highly variable. For example, in the Cozumel 
National Marine Park, sponge cover increased with depth 
from 25% at 15 m to 39% at 55 m (Gress et al. 2018). One 
study in Utila reported sponge cover declining with increased 
depth, from 4% at 15 m to 1% at 40 m (Andradi-Brown et al. 
2016c), though another study recorded sponge cover of 
approximately 20% at several Utilian sites in the 40–70 m 
depth range (Laverick et al. 2017). Despite many publica-
tions on sponges from the Belize Barrier Reef, most sponge 
research has been limited to shallow reefs, which exhibit 
high sponge abundance and diversity (Rützler 2012). On the 
outer fore reef at Carrie Bow Cay, demosponges were 
recorded at about 10% cover, with 29 species found deeper 
than 30 m (Diaz and Rützler 2001). On the south of Carrie 

Bow Cay, the giant barrel sponge Xestospongia muta has 
been observed on the fore-reef slope to depths >60 m and 
was found to spawn deeper than 20 m (Ritson-Williams et al. 
2005). Sponges make up a major component of benthic cover 
on some MAR MCEs, but further research is required to 
understand the complexity of observed patterns.

5.4.4  Fishes

Fish communities on MCEs in the MAR have been well doc-
umented, with several published studies. The earliest obser-
vations came from Belize below 50  m at Tobacco Reef, 
Queen Cays, and Glover’s Reef (Colin 1974). On Utila, fish 
species richness, abundance, and biomass declined with 
increased depth across a 5–40 m depth gradient, though indi-
vidual fish of several species were larger on deeper reefs 
when compared to shallower reefs (Andradi-Brown et  al. 
2016c). On the deeper portions of the Belize Barrier Reef, 33 
fish species were recorded comprising 15 families (Colin 
1974). At Glover’s Reef transects were conducted at 90 m, 
where the commonest fishes observed were Gramma melac-
ara, Gramma sp., Lipogramma klayi, Liopropoma mow-
brayi, and Serranus luciopercanus (Colin 1974). More recent 
fish studies have focused on the reefs of Utila (Andradi- 
Brown et  al. 2016b, c, d, 2017a, b, d). Common fishes 
observed on Utilian reefs in the 70–85 m depth range include 
the Sunshine fish (Chromis insolata) and blackfin snapper 
(Lutjanus buccanella) (Andradi-Brown et  al. 2016b). 
Another deeper observation from Honduras includes the 
hourglass basslet (Lipogramma levinsoni) at 140  m off 
Roatan (Baldwin et al. 2016). The majority of fish species 
observed at 40 m around Utila are depth-generalist species, 
also found on adjacent shallow reefs (Andradi-Brown et al. 
2016c). More detailed fish community surveys have been 
conducted to look at changes in reef fish biomass across a 
depth gradient. For example, several species of Scaridae 
were found at reduced proportions of community biomass on 
MCEs (Andradi-Brown et  al. 2016c). Six species of fish, 
spanning several trophic groups, increased body size on 
MCEs compared to shallow reefs, Acanthurus coeruleus, 
Chromis cyanea, Thalassoma bifasciatum, Clepticus parrae, 
Ocyurus chrysurus, and Scarus iserti (Andradi-Brown et al. 
2016c). Additionally, several locally threatened species, such 
as Caribbean reef sharks (Carcharhinus perezii), which are 
absent from shallow fringing reefs, were observed at depths 
>50 m (Andradi-Brown et al. 2016b). Other shark species, 
such as black nose shark (Carcharhinus acronotus), not pre-
viously reported in fisheries-independent monitoring data 
from Utilian fringing reefs have been observed at >40  m 
depth (Andradi-Brown et al. 2016d).

In Cozumel, Mexico, fish communities have been charac-
terized by Gress et al. (2018). Of the total fish species identi-
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fied, 9% were present only on MCEs, while 43% were 
recorded on both shallow and mesophotic reefs, including 
many commercially important fish species. This is similar to 
Honduras, where the majority of fish at 40 m were also pres-
ent on shallow reefs (Andradi-Brown et  al. 2016c). Of the 
major commercially important fishes in Cozumel, three fami-
lies (Acanthuridae, Haemulidae, and Millidae) showed lower 
biomass at 55 m compared to 15 m, while one family showed 
greater biomass (Pomacanthidae) (Gress et al. 2018).

Non-native lionfish (Pterois spp.) have widely colonized 
shallow reefs and MCEs across the region (Andradi-Brown 
et al. 2017b, d). In 2010, lionfish were observed on Roatan 
MCEs at 122 m, making this one of the earliest MCE inva-
sive lionfish records for Honduras (Schofield 2010). More 
recent observations from Roatan have extended into the 
upper-bathyal zone (200–1000  m depth), with lionfish 
observed down to 250 m (Gress et al. 2017). In Mexico, lion-
fish have been observed at 55 m (Gress et al. 2018) and in 
Belize at depths of 50 m (Voss and Eckert, pers. obs.), though 
it is likely that they extend deeper.

Across the MAR region, Muhling et al. (2013) studied the 
vertical depth distribution of fish larvae. While these samples 
were not directly taken on the reef, in many cases, they were 
taken in  locations adjacent to reefs in Mexico and Belize. 
Muhling et al. (2013) reported larvae for common reef fish 
species such as Thalassoma bifasciatum were mostly 
restricted to shallow waters (< 50 m) during the day, with a 
few individuals in the 50–75 m range. At night individuals 
were collected down to the 75–100  m range. Many other 
common reef fish genera such as Sparisoma, Scarus, and 
Acanthurus larvae were identified as well but found to be 
limited to 40–60  m depth (Muhling et  al. 2013). A reef- 
associated planktonic light-trapping study was conducted on 
shallow reefs (15 m) and MCEs (40 m) on Utila, finding no 
differences in fish larvae abundance between depths 
(Andradi-Brown et  al. 2017c). However, these results are 
affected by limited sampling time, so do not account for 
known seasonality in fish larval recruitment (Luckhurst and 
Luckhurst 1977).

5.4.5  Other Biotic Components

Reef-associated MCE zooplankton studies have been con-
ducted by Andradi-Brown et al. (2017c) in Honduras using 
light traps to collect plankton samples overnight. These sam-
ples suggested similar planktonic community richness and 
overall biomass across the depth gradient, but with high vari-
ation and differences between survey sites (Andradi- Brown 
et al. 2017c). Larger zooplankton organisms (>2 mm body 
size) were found to be more abundant on MCEs than adjacent 
shallow reefs. These larger organisms included groups such 
as decapod crab zoeae, mysid shrimps, peracarid crustaceans, 
and oligochaetes (Andradi-Brown et al. 2017c).

5.5  Ecology

The majority of detailed ecological work on MAR MCEs has 
been conducted on Utila and focused on hard coral or fish 
communities. Hard coral communities around Utila were 
studied by Laverick et al. (2017) across a 5–85 m depth gra-
dient, with the aim of refining how to define a mesophotic 
coral community. To do this, multivariate statistical tech-
niques were used to initially identify natural depth groupings 
of hard coral species based on different sites and depths and 
then to look at the depths of community transition between 
the groupings. Two groups of hard corals were found, a shal-
low specialist community and a depth-generalist community 
(Laverick et  al. 2017). The shallow specialist  community 
was dominant at 5 and 15 m, while the depth-generalist com-
munity was dominant at 40–85 m, although many coral spe-
cies associated with the depth-generalist community were 
also present at 5 and 15 m, but at lower abundance, suggest-
ing that other factors such as shallow-reef environmental 
conditions or competition with shallow specialist species 
could be limiting their abundance (Laverick et al. 2017).

Fish communities on MCEs contain a range of trophic 
groups, whose proportions depend on whether weighting by 
abundance or biomass. Planktivores, comprising 35% of the 
community, are the most numerous reef fishes at 40 m around 
Utila; though this is a lower proportion than the 63%, they 
comprise on adjacent shallow reefs (Andradi-Brown et  al. 
2016c). Piscivores are the largest trophic group by biomass 
at 40 m, making up 37% of the community, though herbi-
vores and invertebrate feeders make up substantial commu-
nity components (Andradi-Brown et al. 2016c). Herbivores 
are the largest group on shallow reefs; despite being present 
on MCEs, they decline as a proportion of the overall fish 
community with increased depth (Andradi-Brown et  al. 
2016c). On even deeper Utilian reefs in the 70–85 m range, 
herbivores are near-absent, and the most commonly observed 
fish species is the planktivorous sunshine fish (Chromis inso-
lata) (Andradi-Brown et al. 2016b).

To better understand the relative roles of fishes in struc-
turing benthic communities compared to other environmen-
tal variables, such as light, Andradi-Brown (2017) conducted 
a factorial experimental manipulation on reefs at 30–40 m 
depth on Utila. Results indicated that light plays a crucial 
role in structuring MCE benthic communities. While hard 
coral and sponge cover declined when fish were excluded, 
these results might have been caused by the reduction in 
water flow from the fish-exclusion cages. Therefore, despite 
the presence of herbivores on MCEs, they are unlikely to be 
the main structuring agents of Utilian MCE benthic macroal-
gal communities (Andradi-Brown 2017).

A wide range of fish survey techniques have been used to 
study MCE fish communities, both on the MAR, but also 
globally. Two studies have been conducted on the reefs of 
Utila to evaluate how the survey technique choice affects 
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biases in recorded MCE fish communities (Andradi-Brown 
et  al. 2016d, 2017a). Diver-operated stereo-video (DOV) 
transects were compared with baited remote underwater 
video stations (BRUVS) on both shallow reefs and MCEs to 
identify depth-specific biases between these techniques 
(Andradi-Brown et al. 2016d). BRUVS consistently recorded 
more species than DOV on both shallow reefs and MCEs. 
Some of the identified differences between both techniques 
were found to vary with depth, with BRUVS better able to 
detect smaller fish on MCEs. Broadly, BRUVS were found to 
be better for recording all components of fish communities 
but took substantially longer to analyze. As well as being 
much quicker to analyze, DOV was reliable for surveying key 
functional groups such as herbivores. A second study on 
Utilian reefs evaluating how method choice affects recorded 
fish communities compared DOV transects filmed with open-
circuit SCUBA on shallow reefs and MCEs with those filmed 
using closed-circuit rebreather (CCR) (Andradi- Brown et al. 
2017a). The minimum approach distance (MAD), the dis-
tance at which divers could approach a fish before it moved 
away, was measured for both dive gear types. While CCR had 
lower MADs, implying divers could get closer to fishes using 
CCR than open-circuit SCUBA, the differences were not 
large enough to alter the detectability of most MAR fish fami-
lies surveyed. However, for many fish families, regardless of 
dive gear choice, divers were able to approach individuals 
more closely on MCEs than shallow reefs, and larger fishes 
were warier of divers than smaller fish.

5.6  Threats and Conservation Issues

Many potential MCE threats, such as fishing pressure, har-
vesting of key benthic species, invasive species, sedimenta-
tion, and water pollution, have been identified 
(Andradi-Brown et  al. 2016a; Gress et  al. 2017, 2018). 
However, there is little long-term monitoring of MCE health 
in the MAR, and MCEs are rarely incorporated into marine- 
protected areas (MPAs). In 2016, an expanded MPA encom-
passing the majority of the Mexican Caribbean was 
announced. It comprises approximately 57,000  km2 of 
marine habitats in the northern MAR area, with about 
19,000  km2 in core zones, and the rest in buffer zones. 
Legislation and management plans for this vast new area are 
still to be announced (Diario Oficial de la Federación 2016). 
Since 1982, an MPA network has been established in Belize, 
encompassing over 3600  km2, approximately 20% of the 
country’s territorial sea. No-take zones comprise roughly 
14% of Belize’s total established MPA area. In Guatemala, 
only about 62  km2 of coral reef area is known, but over 
900  km2 of MPAs have been created mostly in Punta de 
Manabique reserve (Wilkinson 2008; Kramer et al. 2015). In 
Honduras, the entirety of the Bay Islands waters were desig-
nated a National Park in 1997 (Kramer et al. 2015). This pro-

tected area extends 12 nautical miles around the coasts of the 
Islands of Guanaja, Roatan, and Utila.

Management and enforcement of fisheries regulations on 
the southern MAR is generally weak, with overexploitation 
in many areas of Honduras (Gobert et al. 2005; Korda et al. 
2008). Gobert et al. (2005) compared the relative contribu-
tion of the shallow-water and mesophotic fishery for snapper 
and grouper species throughout the Bay Islands of Honduras, 
finding that the mesophotic snapper fishery was significant in 
the region. Large (>500  mm) predatory fishes are rare on 
MCEs in both Cozumel and Utila, suggesting that these fish-
eries are having an impact on fish-length distributions 
(Andradi-Brown et al. 2016c; Gress et al. 2018). In Cozumel, 
there was little difference in MCE fish-length distributions 
when comparisons were made between locations inside the 
National Marine Park and locations without protection 
(Gress et al. 2018). This could suggest that depth is naturally 
acting as a refuge from fisheries, unfortunately, the lack of 
large predatory fish at both locations is likely an indicator 
that the existing shallow-focused marine park is not provid-
ing protection for mesophotic fish communities (Gress et al. 
2018). There is some evidence of MCEs acting as fish ref-
uges on the MAR. The north coast of Honduras historically 
had a large shark fishery leading to shark population declines 
(Box and Canty 2011). This fishery was restricted in 2010 
(Box and Canty 2011), though many shark species that were 
historically present on Utilian shallow reefs remain absent. 
Recently, some of these shark species have been recorded on 
MCEs (Andradi-Brown et  al. 2016b, d), suggesting that 
MCEs may offer protection for some sharks.

During 2015, Laverick et al. (2017) observed extensive 
dead plating Agaricia spp. at 70 m depth in Utila, suggest-
ing there were large colonies at these depths. Andradi-
Brown (2017) monitored reef areas at 30–40 m depth at one 
site on Utila, using permanent photo-quadrats over an 
18-month period during 2015–2016. While their study was 
not intending to monitor background changes in reef health, 
they detected a slight, but significant, decline in hard coral 
cover over this short period (Andradi-Brown 2017). During 
a coral bleaching event in 2015, Laverick and Rogers (2018) 
conducted a transplant experiment on Utila, moving frag-
ments of A. lamarcki between shallow and mesophotic 
depths along with controls. They found that fragments 
placed at mesophotic depths had lower bleaching rates and 
greater survival than fragments placed on shallow reefs. 
However, bleaching was observed in MCE fragments and in 
A. lamarcki colonies around Utila down to 35  m depth 
(Laverick and Rogers 2018).

Sedimentation is a major threat to reefs in the MAR 
region and has long been highlighted as a key issue to address 
(Harborne et al. 2001). In Banco Capiro, an offshore reef in 
Tela Bay, on the Honduran mainland, some preliminary 
dives looking for MCE communities were conducted to 42 m 
during 2015. Despite having the highest shallow-reef coral 
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cover reported in the MAR (Bodmer et al. 2015), no MCEs 
were observed. Instead, at the base of the offshore bank, an 
extensive sediment bed was found smothering patch reefs 
comprised of dead coral skeletons that still had some fishes 
associated with them (Andradi-Brown, pers. obs.).

Cozumel has long been famed for its extensive meso-
photic black coral populations and the associated black coral 
jewelry industry (Kenyon 1984). The majority of the jewelry 
is made from Antipathes caribbeana and Plumapathes pen-
nacea, as these species form the largest colonies, with skel-
etons that are cut, polished, and then handcrafted into 
jewelry. In the Mexican Caribbean, the earliest records of 
black corals harvesting date from the early 1960s. While the 
availability of black coral jewelry on Cozumel has declined 
in recent years, shops selling black coral jewelry and hand-
crafts are still widespread (Gress, pers. obs.). Regional har-
vest rates reported from the 1980s to early 1990s were 
between 1000 and 1500 kg of gross product per year, causing 
overexploitation of black coral in the area (Padilla and Lara 
2003). Declining black coral population densities in Cozumel 
have been observed since the 1970s fishers, although no pop-
ulation assessments were conducted until the late 1990s. In 
1994, three species of black corals were included in the 
Mexican Official Norm that lists national threatened species 
under special protection: Antipathes dichotoma (wrongly 
cited as A. bichitoena), A. grandis, and A. ulex (wrongly 
cited as A. ules) (Padilla and Lara 2003). The inclusion of 
these three species was however a mistake, as they have not 
been recorded in Mexican waters on either the Atlantic or 
Pacific coast (Opresko and Sanchez 2005). The absence of 
these species was revealed by the first population assessment 
conducted in 1998 (Padilla Souza 2004). The only other pop-
ulation assessment, allowing changes in population density 
and colony size for the two primary harvested species to be 
calculated, was conducted during summer 2016 (Gress and 
Andradi-Brown 2018). Results indicate that the P. pennacea 
population density has severely declined, though the remain-
ing mesophotic colonies are larger on average than those 
recorded in the 1990s, suggesting that there is low recruit-
ment or juvenile survival rates (Gress and Andradi-Brown 
2018).

Non-native lionfish are highly abundant on MCEs in some 
locations in the MAR, such as the Bay Islands of Honduras 
(Gress et  al. 2017; Andradi-Brown et  al. 2017b, d) but at 
lower densities on MCEs in other areas such as Cozumel 
(Gress et al. 2018). The greatest density recorded on MAR 
MCEs is in Utila, where lionfish reached 3.0 individuals per 
250 m2 at 70 m and were found to be feeding on native fishes 
(Andradi-Brown et al. 2017b). While lionfish are known to 
exhibit ontogenetic migrations across shallow tropical marine 
habitats (Claydon et al. 2012), it is not clear whether these 
extend to MCEs. Utilian MCE lionfish behaviorally respond 

to divers in similar ways as lionfish populations previously 
exposed to culling in shallower reefs (i.e., skittish) (Andradi-
Brown et  al. 2017b), supporting the idea of ontogenetic 
migration. Yet, culling alters lionfish body- size distributions 
(Frazer et al. 2012), making ontogenetic migrations difficult 
to detect in areas with depth-restricted culling. See Andradi-
Brown (2019) for a review of lionfish on MCEs. Work on 
Utila has identified that lionfish on MCEs are larger, and 
females are more mature for their body size than individuals 
found in adjacent shallow reefs (Andradi- Brown et al. 2017b, 
d). Concern has been raised whether substantial mesophotic 
populations could be undermining current lionfish manage-
ment, which is broadly shallow-reef focused (Andradi-Brown 
et al. 2017d). Taken together, these observations suggest that 
MCE health on the southern MAR is likely declining, though 
more research and long-term monitoring is required to estab-
lish this across the region.

5.7  Conclusion

MCE research in the MAR is still in an early stage, with the 
majority of studies conducted restricted to a few key sites 
such as Cozumel, the atolls of Belize, Utila, and to a lesser 
extent Roatan. We were unable to identify any MCE studies 
from Guatemala. In addition, much of the MCE research 
conducted in the region has focused on upper MCEs, with 
few quantitative surveys conducted on lower MCEs (60–
150  m). Existing studies are also site-specific, with no 
directly reef-associated studies incorporating multiple geo-
graphical locations along the length of the MAR to test for 
regional patterns. These are major knowledge gaps that 
future studies should address. Many threats to MCEs on the 
MAR are common throughout the Caribbean and wider 
western Atlantic, and there is an urgent need to address these. 
As the second largest reef system in the world, with four 
countries involved in management, this will inevitably be 
complex. However, because of their inherent biodiversity, 
and the potential role that MCEs may play underpinning 
overall reef resilience, it is crucial to better incorporate them 
into reef management plans.
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