
ORIGINAL RESEARCH
published: 22 May 2018

doi: 10.3389/fmars.2018.00174

Frontiers in Marine Science | www.frontiersin.org 1 May 2018 | Volume 5 | Article 174

Edited by:

Michael Sweet,

University of Derby, United Kingdom

Reviewed by:

Yoichi Miyake,

The University of Tokyo, Japan

Jonathan A. Anticamara,

University of the Philippines Diliman,

Philippines

*Correspondence:

Lysel Garavelli

lyselgaravelli@gmail.com

Specialty section:

This article was submitted to

Coral Reef Research,

a section of the journal

Frontiers in Marine Science

Received: 21 February 2018

Accepted: 02 May 2018

Published: 22 May 2018

Citation:

Garavelli L, Studivan MS, Voss JD,

Kuba A, Figueiredo J and

Chérubin LM (2018) Assessment of

Mesophotic Coral Ecosystem

Connectivity for Proposed Expansion

of a Marine Sanctuary in the

Northwest Gulf of Mexico: Larval

Dynamics. Front. Mar. Sci. 5:174.

doi: 10.3389/fmars.2018.00174

Assessment of Mesophotic Coral
Ecosystem Connectivity for
Proposed Expansion of a Marine
Sanctuary in the Northwest Gulf of
Mexico: Larval Dynamics
Lysel Garavelli 1,2*, Michael S. Studivan 2, Joshua D. Voss 2, Alyson Kuba 3,4,

Joana Figueiredo 4 and Laurent M. Chérubin 2

1 Pacific Northwest National Laboratory, Richland, WA, United States, 2Harbor Branch Oceanographic Institute, Florida

Atlantic University, Fort Pierce, FL, United States, 3 ARC Centre of Excellence Coral Reef Studies, James Cook University,

Townsville, QLD, Australia, 4Department of Marine and Environmental Sciences, Halmos College of Natural Sciences and

Oceanography, Dania Beach, FL, United States

In coral reef ecosystems, mesophotic coral habitat ( >30m to the end of the photic zone)

are extensions of shallow reefs and contribute to the persistence of coral reef populations.

In the North West Gulf of Mexico (NW GOM), the Flower Garden Banks National Marine

Sanctuary (FGBNMS) is an isolated reef ecosystem comprising contiguous shallow and

mesophotic reefs habitats on two central banks along the margin of the continental

shelf. A future expansion of the sanctuary is proposed to include additional mesophotic

banks and aims at building a network of protected areas in the NW GOM to ensure

the persistence of the coral reef populations inhabiting the sanctuary. To evaluate the

feasibility of this expansion and investigate the overall dynamics of coral species in

the region, we studied the patterns of larval connectivity of Montastraea cavernosa, a

common depth generalist coral species, using a larval dispersal modeling approach.

Our results highlighted larval exports from the NW GOM banks to the northeastern

and southwestern GOM, larval connectivity between all banks investigated in this study,

and the potential for exporting larvae from mesophotic to shallower reefs. Our study

associated with Studivan and Voss (2018; associate manuscript) demonstrates the

relevance of combining modeling and genetic methods to consider both demographic

and genetic timescales for the evaluation of the connectivity dynamics of marine

populations. In the case of the NW GOM, both studies support the future management

plan for expanding FGBNMS.

Keywords: mesophotic coral ecosystems, northwest Gulf of Mexico, Flower Garden Banks National Marine

Sanctuary, Montastraea cavernosa, larval connectivity, sanctuary expansion, marine spatial planning

INTRODUCTION

Coral reefs ecosystems face severe degradation from local and global threats including
overfishing, nutrient and sediment run-off, and climate change (Hoegh-Guldberg et al., 2017;
Hughes et al., 2018). Worldwide bleaching events have contributed to global loss of coral
cover and consequent decline of coral reef ecosystems (Gardner et al., 2003; Bellwood
et al., 2004; Hughes et al., 2017). Despite the socio-economic importance of coral reefs,
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protection of these critical ecosystems remains limited. Most
of the degradation has been documented in shallower reef
ecosystems (<30m), while deeper mesophotic coral ecosystems
(MCEs) are projected to act as refugia and contribute to the
persistence of coral reef populations (Glynn, 1996; Lesser et al.,
2009; Bongaerts et al., 2010; Slattery et al., 2011; Van Oppen
et al., 2011; Thomas et al., 2015). MCEs are light-dependent reef
communities, standing between 30m depth and the lower limit
of the photic zone (Bongaerts et al., 2010; Hinderstein et al.,
2010; Voss et al., 2014). In the Caribbean region, MCEs are
hypothesized to be relatively less impacted by thermal stress and
anthropogenic impacts as compared to shallower reefs (Bak et al.,
2005; Menza et al., 2008).

In the northwest Gulf of Mexico (NW GOM), around 180 km
off the coasts of Texas and Louisiana, coral reef ecosystems
form dozen of banks mainly comprising mesophotic reefs along
the margin of the continental shelf (Schmahl et al., 2008).
Despite the extensive degradation of other ecosystems in the
northern hemisphere, the coral cover in the NW GOM has
remained relatively stable compared to other regions of the wider
Caribbean (Aronson et al., 2005; Hickerson et al., 2012). This
stability is mainly explained by low temperatures variations and
high larval supply driven by the Gulf of Mexico Loop Current
(Oey et al., 2005; Nunes et al., 2011; Rippe et al., 2017). Along
the banks of the NW GOM, the coral diversity is relatively low.
Among these banks, West and East Flower Garden Banks (FGB)
include contiguous shallow and mesophotic reefs ecosystems
(Schmahl et al., 2008). Reefs on West FGB and East FGB are
described as some of the most pristine reef habitats and exhibit
50% to 80% coral cover, mainly massive brain and star corals
(Hickerson et al., 2012; Johnston et al., 2016). Other banks such
as Bright, Geyer, andMcGrail Banks contain mesophotic habitats
only and are mainly constituted of scleractinian and macroalgal
communities.

In 1992, the FGB National Marine Sanctuary (FGBNMS) was
created to protect the fish and benthic species living in this
ecosystem.West FGB and East FGB were the first banks included
in the sanctuary followed by Stetson Bank in 1996. Stetson Bank
supports the least coral communities in the FGBNMS, with
a coral cover of less than 8% (DeBose et al., 2013; Johnston
et al., 2016). Following extensive research in the NW GOM, a
future expansion of the sanctuary has been proposed to include
additional mesophotic reef banks (Department of Commerce,
National Oceanic and Atmospheric Administration, 2015). This
future management plan aims to build a network of protected
coral banks in the NW GOM to ensure the persistence of the
sanctuary’s coral and fish populations.

To ensure the persistence of marine species and develop
efficient management strategies such as the expansion of the
FGBNMS, the assessment of larval connectivity is essential
(Hastings and Botsford, 2006; Gaines et al., 2010; Burgess
et al., 2014). For benthic species with a pelagic larval stage
such as corals, larval connectivity depends on both biotic and
abiotic processes such as hydrodynamic current, availability
of spawning and settlement habitat, fecundity, larval behavior,
larval pre-competency period, and larval duration (Pineda
et al., 2007). Using a modeling approach, the influence of

spawning periodicity, fecundity, dispersal duration, and time to
competency have been shown to influence larval connectivity
of coral species (Holstein et al., 2014, 2015a; Kough and
Paris, 2015). However, those biological processes are not always
known and are often complicated to estimate. In a recent
study, Davies et al. (2017) modeled the larval dispersal in the
FGB of Pseudodiploria strigosa, a scleractinian coral species
with a short planktonic larval duration (PLD; 3 to 20 days).
Their model did not predict larval export outside the FGB
for this species and larvae released from the West FGB and
East FGB had limited dispersal. Davies et al. (2017) based their
results on virtual larvae passive surface transport only and their
recruitment method did not include a pre-competency period,
during which the larvae cannot settle, which would tend to
overestimate local retention and underestimate long-distance
dispersal.

In this study, we focus on Montastraea cavernosa, a common
depth generalist, broadcast-spawning coral species.M. cavernosa
is one of the most abundant coral species in the West FGB,
East FGB, and in other mesophotic reef habitats of the NW
GOM (Pattengill-Semmens et al., 2000; Voss et al., 2014).
Its larval connectivity in the NW GOM and, in particular
between the FGBNMS and potential additional protected banks,
is unknown. By developing a biophysical model of larval
dispersal for M. cavernosa among mesophotic reef banks in
the NW GOM, we predict patterns of connectivity that may
influence population persistence in this region. The model
accounts for critical biotic and abiotic processes driving M.
cavernosa larval connectivity both horizontally across banks
and vertically between shallow and mesophotic reefs. To
understand the overall dynamics of M. cavernosa in the
region, this study 1. Investigates the dispersal potential of M.
cavernosa larvae in the GOM; 2. Determines the sustainability
of M. cavernosa populations in the northwestern banks of
the NW GOM by assessing its local connectivity patterns;
and 3. Evaluates the larval exchange between mesophotic and
shallow reefs by assessing the vertical connectivity in the West
FGB and East FGB. The results are designed to serve as a
basis for spatial management of M. cavernosa in the NW
GOM.

MATERIAL AND METHODS

Study Area
Our study focuses on five banks located in the NW GOM,
from west to east: West FGB, East FGB, Bright, Geyer, and
McGrail (Figure 1). The former two are currently protected
within FGBNMS and the later three are under consideration
for protection in the pending FGBNMS expansion plan
(Department of Commerce, National Oceanic and Atmospheric
Administration, 2015). Stetson Bank (the third bank in
FGBNMS) was not considered for this study due to its low coral
cover (DeBose et al., 2013; Johnston et al., 2016). West FGB and
East FGB are characterized by the presence of both shallow and
mesophotic reefs habitat while Bright, Geyer, and McGrail Banks
include mesophotic reefs only.
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FIGURE 1 | Map of the northwest Gulf of Mexico showing the locations of five reef banks and the density of scleractinian (number of colonies by m2) for each bank.

Banks from west to east: West Flower Garden, East Flower Garden, Bright, Geyer, and Mc Grail. The inset map shows the location of the five banks in the entire Gulf

of Mexico.

Hydrodynamic Model
The Naval Oceanographic Office (NAVOCEANO) operates
regional ocean prediction systems based on the Navy Coastal
Ocean Model (NCOM; Barron et al., 2006). The Naval Research
Laboratory developed NCOM, which is based on the Princeton
Ocean Model with time invariant hybrid (sigma over Z) vertical
coordinates. NCOM AMSEAS is a regional NCOM simulation
whose domain covers the Americas Seas region including the
Gulf of Mexico and the Caribbean Sea at 1/36 degree (∼3 km)
horizontal resolution and is discretized over 40 levels in the
vertical. The model topography comes from Naval Research
Laboratory Digital Bathymetry Data Base 2-min resolution (NRL
DBDB2). The atmospheric forcing fields are provided over
this domain by a 15 km application of the Navy’s Coupled
Ocean/Atmosphere Mesoscale Prediction System (COAMPS R©)
model. The AMSEAS ocean prediction system assimilates all
quality-controlled observations in the region including satellite
sea surface temperature and altimetry, as well as surface and
profile temperature and salinity data using the NRL-developed
Navy Coupled Ocean Data Assimilation (NCODA) system.
Boundary conditions are applied from the NAVOCEANO
operational 1/12 degree Global HYCOM (Chassignet et al.,
2009). The model is forced by tides and discharges from
53 rivers in the region (Ko et al., 2003). NAVOCEANO
distributes 3-h NetCDF files containing ocean temperature,
salinity, eastward and northward currents, and elevation, along
with the atmospheric forcing fields. The files are accessible from
the National Centers for Environmental Information (NCEI).

AMSEAS time aggregated dataset is available from 2010 to
present. The AMSEAS model has been deployed in response
to the Deepwater Horizon oil spill event in 2010 (Zaron et al.,
2015). A simulation was conducted using a Lagrangian particle
tracker with random walk diffusion of archived AMSEAS data,
with a particular focus on pollution pulses that penetrate into the
estuaries east of theMississippi River. This modeling formulation
was capable of reproducing the oil spill transport (Zaron et al.,
2015). This model was also used to predict likely drift tracks of
sea turtles carcasses in the north central Gulf of Mexico (Nero
et al., 2013). Surface currents and wind forcing used in estimating
leeway and subsequent carcass drift backtracks were obtained
from AMSEAS. In a similar manner, we used the velocity and
density fields from AMSEAS in a biophysical model to simulate
the transport ofM. cavernosa larvae.

Larval Dispersal Model
To model M. cavernosa larval dispersal in the NW GOM,
the individual-based offline Lagrangian tool Ichthyop v3.1 was
used (Lett et al., 2008). The virtual larvae were represented as
particles in three dimensions and characterized by their latitude,
longitude, and depth at each time step of the model (i.e., 1 h). In
Ichthyop, the particles are advected by velocity fields generated
by the NCOM AMSEAS hydrodynamic model. A forward-
Euler advection was implemented in the model and horizontal
diffusion was included following Peliz et al. (2007). The vertical
diffusion coefficient was not included. Spawning and settlement
habitat polygons were designed based on multibeam bathymetry
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data assembled from datasets of the United States Geological
Survey, University of New Hampshire. Depth distribution of
scleractinian coral at FGB was used to select spawning and
settlement depths (Table 1). Our study focuses on 3 years: 2013,
2014, and 2015. These 3 years correspond to the same years
during which Studivan and Voss (2018; associate manuscript)
collected the coral samples used to assess the genetic population
structure of M. cavernosa. To answer our study’s objectives,
different simulations were performed. Those simulations are
detailed below.

M. cavernosa Regional Larval Dispersal
The goal of the first set of simulations was to investigate the
dispersal potential of M. cavernosa larvae in the GOM. We
created 19 polygons of 16 km2 representing the habitat of
M. cavernosa in the NW GOM banks: 6 at West FGB; 7 at East
FGB; 2 at Bright, Geyer, and McGrail Banks. Observations of
spawning events in FGB showed that M. cavernosa spawning
occurs around the first week after the full moon from July to
September (Annual reports of coral spawning cruise, NOAA).
The same features have been observed in the Caribbean and
Bermudian reefs (Szmant, 1991). Over the polygons, 10,000
particles were randomly released in July, August, and September
from 2013 to 2015. Releases occurred between 6 and 9 days after
the full moon of each month (Acosta and Zea, 1997; Sammarco
et al., 2004; Annual reports of coral spawning cruise, NOAA). In
absence of data for the larval dispersal duration of M. cavernosa,
we used data from another broadcasting scleractinian coral of
the Caribbean region (Orbicella faveolata; Holstein et al., 2014,
2015a). The PLD was set to 20 days. (A sensitivity analysis
was performed with 10 days of PLD and dispersal results were
qualitatively similar). No data on larval behavior was available for
M. cavernosa.We included a buoyancy scheme of the larvae in the
model following Holstein et al. (2015a; Table S1.1).M. cavernosa
larvae positions were recorded at the end of their modeled
dispersal to estimate their putative destination in the GOM. The
mean larval dispersal distances were calculated from their release
to their destination locations.

M. cavernosa Local Larval Connectivity
The goal of the second set of simulation was to assess
M. cavernosa local larval connectivity patterns in the banks of the
NWGOM. The same modeling approach was used as for the first
set of simulation. Themain difference here is the incorporation of
settlement habitat. The 19 polygons previously described (i.e., 6 at

TABLE 1 | Minimum and maximum spawning and settlement depths (i.e., depth

range; in m) for each bank of the study area.

Banks Depth range (m)

West FGB 18–112

East FGB 16–110

Bright 33–84

Geyer 50–90

McGrail 45–87

West FGB; 7 at East FGB; 2 at Bright, Geyer, and McGrail Banks)
were used as both release and settlement areas for M cavernosa
larvae. Biological parameters ofM. cavernosa larvae are the same
as in the first set of simulation. The main difference with the first
set of simulation was the addition of a larval pre-competency
period in themodel. The duration of 3.97 days of pre-competency
period was chosen based on larval experiments results (data
obtained from laboratory experiment, Supporting Information
S1, Figure S1.1). Over the 19 polygons representing release
areas, 10,000 larvae were randomly released in July, August, and
September from 2013 to 2015. The simulated larval dispersal
lasted for 20 days (i.e., duration of PLD; A sensitivity analysis
was performed with 10 days of PLD. Connectivity patterns were
qualitatively similar and values were slightly higher with shorter
PLD.). During their dispersal, larvae located in a settlement area
and that were at least 3.97 days old were considered settled in the
model.

To predict the larval connectivity patterns of the species
between release and settlement areas of the NWGOM banks, the
outputs of the model simulation were analyzed in connectivity
matrices. Values of the connectivity matrix represent the larval
transport success Ci,j from release polygon i to settlement
polygon j. In order to account for the coral fecundity in
the model, we used density data of scleractinian coral species
collected in each bank (see Voss et al., 2014 for methods;
Figure 1). The coral density was then estimated in each habitat
polygon of the model. The rows of the connectivity matrix (i.e.,
release areas) were multiplied by the estimated density of coral
in each polygon. Monthly larval transport success was averaged
between all the banks and compared for each year of simulation
to assess the monthly and annual variability of M. cavernosa
larval connectivity patterns. To calculate larval exchanges of
M. cavernosa between potential subpopulations and identify
approximately independent subpopulations or metapopulations
(i.e., connected subpopulations), we applied a clustering method
developed by Jacobi et al. (2012). The method consists of
dividing the study area into a finite number of mutually exclusive
subpopulations based on minimization of an objective function
that calculates larval exchange between potential subpopulations
using the connectivity matrix. The connectivity matrix used was
the average per bank and over the 3 years of study (2013, 2014,
and 2015).

M. cavernosa Vertical Larval Connectivity
in West FGB and East FGB
The goal of the third set of simulations was to assess the larval
vertical connectivity between the shallow andmesophotic reefs of
the West FGB and East FGB. Those two banks have the deepest
mesophotic reefs in the region (112m for the West FGB and
110m for the East FGB). Coordinates of the polygons previously
defined for the West FGB and East FGB were used. Polygons
representing shallow reefs of the FGB were set between 18 and
30m depth for the West FGB and between 16 and 30m depth
for the East FGB. Polygons representing mesophotic reefs were
set between 31 and 112m depth for the West FGB and between
31 and 110m depth for the East FGB. Over these polygons
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representing both shallow and mesophotic reefs in the West and
East FGB, 10,000 larvae were randomly released in July, August,
and September from 2013 to 2015 for a duration of 20 days (i.e.,
duration of PLD). During their dispersal, larvae located in one of
the polygons and that were at least 3.97 days old were considered
settled in the model. The biological parameters of M. cavernosa
were similar to the previous detailed simulations.

To predict the larval vertical connectivity patterns of
M. cavernosa between the shallow and mesophotic reefs of West
FGB and East FGB, the outputs of the model simulation were
analyzed in connectivity matrices. The results were averaged over
the 3 years of simulation.

RESULTS

Regional Larval Dispersal in the NW GOM
For all 3 years of simulation, larval abundance was higher close to
the NW GOM banks, i.e., all of the banks used in the simulation
(Figure 2). Generally, larvae remain in the northern part of the
GOM although none was transported north onto the continental
shelf. However, direction of the larval transport differs depending
on the year. While larvae are mainly exported southwest of
the release banks in 2013 (Figure 2A; mean larval dispersal
distance= 54.4± 46.3 km), they follow a northeastern path along

the northern shelf of the GOM in 2014 and 2015 (Figures 2B,C;
mean distance = 203.4 ± 133.5 km for 2014, 212.6 ± 146 km for
2015). In the last 2 years of simulation, larval trajectories split
into two branches from around the Mississippi river delta (29

◦
N,

89
◦
W). The maximum distance of larval dispersal was 731.7 km

in 2014 (it was 458.2 km in 2013 and 646.7 km in 2015).

Local Larval Connectivity Between Banks
The model predicts significant yearly and monthly variability
in larval transport success (Figure 3). In 2013, larval transport
success was overall 2.2% and higher than in the other years (0.7%
in 2014; 0.94% in 2015). Monthly variability was mostly observed
in 2013. Larval transport success was lower in August than in
July and September (2.51% in July; 0.65% in August; 3.44% in
September). This tendency was also noted for 2015 (1.01% in July;
0.69% in August; 1.11% in September). In 2014, transport success
was higher in July compared to August and September (1.10% in
July; 0.61% in August; 0.40% in September).

Larval connectivity patterns for M. cavernosa between banks
exhibited interannual variability (Figure 4). The model predicted
larval settlement in all the banks. The lowest larval transport
success was toward the West FGB and the highest toward
McGrail. As previously observed, a decrease in larval connectivity
was noted in 2014 compared to the other years. East FGB (mainly

FIGURE 2 | Predicted larval abundance of M. cavernosa in the Gulf of Mexico after release from the banks (West FGB, East FGB, Bright, Geyer, Mc Grail; see

Figure 1 for the location of each bank) for the years 2013 (A), 2014 (B), and 2015 (C). The number of larvae was summed inside a grid cell of 0.15 × 0.15◦.
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FIGURE 3 | Mean transport success (percentage) of M. cavernosa larvae per

month and year of release averaged over West FGB, East FGB, Bright, Geyer,

and Mc Grail.

in 2013) and McGrail are the banks where to larvae were the
most transported, mostly coming from West FGB, and the West
FGB, East FGB, and Bright, respectively. Local retention (larvae
settling on the same bank where they were released) is higher in
2013 compared to 2014 and 2015 (0.72% in 2013; 0.17% in 2014;
0.009% in 2015). In 2013, local retention is higher in East FGB
(1.15%) and McGrail (1.52%). It is null in both 2014 and 2015 in
theWest FGB andMcGrail. The clusteringmethod applied to our
connectivity results suggests that all the banks belong to the same
metapopulation.

Vertical Larval Connectivity in the West
FGB and East FGB
Vertical connectivity of M. cavernosa was investigated for
the 3 years of simulation in the West FGB and East FGB
(Figure 5). Globally, more larvae settled in the mesophotic
reefs than in the shallow reefs for both banks (mean transport
success to mesophotic reefs = 3.84%; mean transport success
to shallow reefs = 0.44%). Larval transport was also mostly
unidirectional from the West FGB to the East FGB. The
mesophotic reefs of the East FGB received the most larvae from
both shallow and mesophotic reefs of the West FGB. Local larval
retention was higher inside the East FGB (from shallow and
mesophotic reefs toward mesophotic reefs; 1.15%) than inside
the West FGB (0.32%) and higher in the mesophotic reefs for
both banks (0.43% in mesophotic reefs vs. 0.02% in shallow
reefs).

DISCUSSION

The biophysical larval dispersal model developed for
M. cavernosa in the NW GOM highlighted larval exports
from the NW GOM banks to the northeastern and southwestern
GOM, larval connectivity between all banks investigated in this
study, and the potential for exporting larvae from mesophotic to
shallow reefs.

The larval dispersal model predicted large-scale larval
dispersal of M. cavernosa outside the NW GOM banks. Larvae
were transported from the northwestern to the northeastern
GOM in 2014 and 2015. Predictive likelihood of habitat for
mesophotic coral in the GOM shows potentially suitable depths
and benthic composition for scleractinian coral along nearly all
of the outer continental shelf (Kinlan et al., 2013). In 2014, we
found that larvae could be transported as far as 731.7 km despite
a relatively short PLD of 20 days. In the NW GOM, the banks
investigated in this study could serve as larval sources for MCE
that fall within the area of possible dispersal such as Pinnacles
Reef Trend and Florida Middle Grounds (Locker et al., 2010).

M. cavernosa subpopulations in the NW GOM banks selected
in this study were connected at least once between each other
through larval dispersal. The overall patterns of M. cavernosa
larval connectivity in the NW GOM banks can be described as
a main transport from the western banks to the eastern banks
with few dispersal events in the opposite direction. However,
connectivity patterns were considerably variable intra and inter-
annually. Year 2013 showed the highest local larval transport
success in July and September, consequently the shortest range
of larval transport, which is to the west of the banks. In contrast,
years 2014 and 2015 show the longest transport range and in both
years, it is eastward and south along the shelf break in 2015 or
southeast from the banks in 2014.

The variability ofM. cavernosa larval dynamics patterns could
be explained by the variability in direction and magnitude of
oceanic currents in the NW GOM. The surface circulation
in the NW GOM is dominated by the northern extent of a
persistent western boundary current that flows eastward along
the continental shelf break. In addition, the impingement of
Loop Current Eddies (LCEs), and their cyclonic counterpart is
a major driver of the variability of the western boundary current
(Vukovich and Crissman, 1986; Sutyrin et al., 2003). Shoreward
of the western boundary current, over the broad Louisiana-Texas
shelf (LaTex), the flow is relatively weak, generally cyclonic, and
largely driven by wind stress. The annual variability between
larval dispersal patterns obtained in 2013 and the other two
years (2014 and 2015) is due to the lack of impingement of
LCEs and cyclonic counterparts on the LaTex shelf break, as
shown in Figure 6. In July 2013, FGB is filled with submesoscale
features (Figure 6A) favorable to local larval transport, while
in July 2014 and 2015, unbroken mesoscale vorticity filaments
replaced these features and are associated with relatively strong
along-shelf currents leading to longer larval dispersal distances
(Figures 6B,C). LCEs (cyclones) impingement on the LaTex and
Mexico-Texas shelves drives strong eastward (westward) flows
along the LaTex shelf break that replaced the submesoscale
features seen in summer 2013 (Figure 6A), enhancing remote
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FIGURE 4 | Connectivity matrices representing the percentage of transport success of M. cavernosa larvae from release to settlement areas in the banks (West FGB,

East FGB, Bright, Geyer, Mc Grail) for the years 2013 (A), 2014 (B), 2015 (C).

along-shelf transport and cross-shelf transport in eddies. The
2013 transport pattern is characteristic of that region as revealed
by climatological Lagrangian Coherent Structures (cLCS) in
Gough et al. (2018). This pattern is likely to be driven by the
sub-mesoscale features found near the shelf break (Figure 6). In
2014 and 2015, cross-shelf export is localized in the region of
the hook-like cLCS pattern identified in Gough et al. (2018) and
seems to be associated with significant eddy driven alongshore
currents. Significant eddy impingement on the NW GOM is
thus identified as one of the drivers of long-range dispersal of
coral larvae from the NW GOM banks to the eastern GOM.
Such eastward dispersal events have been previously described
around the FGB in 1997 and 1998 (Lugo-Fernández et al., 2001).
Persistent Lagrangian patterns in the NW GOM identified by
Gough et al. (2018), who used 18-year average flow field data
(1995-2012), suggest that short westward dispersal near FGB has
been most likely to occur as observed in Davies et al. (2017).

The unidirectional larval transport from West FGB and
East FGB to Bright, Geyer, and McGrail arises the question of
sufficient larval supply inside West FGB and East FGB. For
both West FGB and East FGB, larval dispersal from mesophotic
reefs to shallow reefs was predicted, supporting the role of
mesophotic reefs as larval sources for shallower reefs (Lesser et al.,

2009; Slattery et al., 2011; Holstein et al., 2015a,b). However,
contrasting spatial patterns of vertical larval connectivity between
West FGB and East FGB were also observed. The most
significant pattern of vertical larval exchanges was a cross-vertical
connectivity from the West FGB toward the East FGB. Both
shallow and mesophotic reefs of the West FGB were exporting
larvae to the East FGB. The low larval connectivity toward
the East FGB from the other banks considered in this study
and previously observed may be counterbalanced by the local
retention in the East FGB and the vertical larval exchanges from
the West FGB, and be sufficient to sustain the populations of
M. cavernosa in the area. Also, including other mesophotic reefs
located southern of the area in the analysis could offset the low
larval transport success toward West FGB.

Although banks of the NW GOM are relatively spatially
close the ones from the others, local retention in the area and
larval connectivity between banks were low. However, all the
banks were predicted to belong to the same metapopulation.
Therefore, recurrent larval exchanges between banks may be
sufficient to allow the sustainability of M. cavernosa populations
in this region, although it is isolated from other MCEs. Both
the larval dispersal model from our study and genetic data
from Studivan and Voss (2018; associate manuscript) suggest
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FIGURE 5 | Connectivity matrices representing the mean percentage of

vertical transport success of M. cavernosa larvae between shallow (18–30m

depth for West FGB and 16–30m depth for East FGB) and mesophotic

(30–112m depth for West FGB and 30–110m depth for East FGB) reefs in the

West and East FGB for the 3 years of simulation (2013, 2014, and 2015).

SHAL, shallow; MESO, mesophotic.

that the NW GOM is well mixed. However, genetic data
also showed a downstream to upstream net migration likely
explained by the seasonal freshwater westward transport over
geological timescales (Oey et al., 2005; Schmahl et al., 2008).
The difference in findings between our study and Studivan and
Voss (2018; associate manuscript) study is most likely due to the
short integration time (i.e., demographic) vs. long (i.e., genetic)
timescales, which happened to encompass 2 years over three of
intense eddy impingement, which yielded the eastward larval
transport. Given the possibility that individual coral colonies can
live hundreds of years, a relatively rare larval dispersal event from
one bank to the other is likely enough to observe low population
differentiation between two banks. More importantly, the results
from the demographic (this study), and genetic Studivan and
Voss (2018; associate manuscript) connectivity suggest that the
reduced demographic connectivity is sufficient to sustain high
genetic connectivity between all banks.

Notwithstanding, our biophysical model was used only to
provide a snapshot of the larval dynamics of M. cavernosa in
some of the northwestern MCEs of the GOM. Considering
what seem to be the recent yearly variability of the larval
connectivity patterns and of the accrued eddy impingement in
the region, eastward dispersal events similar to the ones described
here may occur more often in the future. The singularity
of our results suggests that the years selected were atypical,
in particular 2014 and 2015. Our results’ annual variability
highlights the necessity to performmodeling studies over enough
years, particularly in small-scale larval dispersal studies, in order
to smooth the effects rare events (Holstein et al., 2015a; Kough
and Paris, 2015; Chérubin and Garavelli, 2016; Davies et al.,
2017). Furthermore, because of a lack of available larval biological

FIGURE 6 | Monthly mean normalized relative vorticity (ζ/f ) at 10m in the

northwest Gulf of Mexico. ζ is the curl of the velocity and f is the Coriolis

parameter. Numbers show the isobaths depth. (A) July 2013. (B) July 2014.

(C) July 2015. The black rectangle shows the location of the banks (West

FGB, East FGB, Bright, Geyer, Mc Grail).
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data on M. cavernosa, our modeling approach used PLD and
buoyancy data from another scleratinian species of the Caribbean
region (i.e., O. faveolata). Although these two species are closely
related, more studies on the larval life cycle of M. cavernosa are
needed to improve our knowledge on its larval dynamics.

Isolated mesophotic reefs, such as the northwestern banks
of the GOM, have a role in the persistence of coral reefs
population as well as in the supply of larvae toward remote
MCEs (Thomas et al., 2015). Findings on connectivity of
M. cavernosa among banks of the NW GOM from our study
and Studivan and Voss (2018; associate manuscript) study
support the future management plan for expanding FGBNMS by
including Bright, Geyer, andMcGrail Banks. Moreover, the large-
scale dispersal patterns of M. cavernosa in the GOM observed
in our study emphasizes the necessity of future connectivity
research between all MCEs in the region using multiple species
models to assess the possibility of establishing a regional
conservation plan. Finally, our study associated with Studivan
and Voss (2018; associate manuscript)’study show the relevance
of combining modeling and genetic methods in investigating
the connectivity patterns of marine populations for management
purpose.
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